
Page 1 of 56

 TVET CERTIFICATE IV in SOFTWARE DEVELOPMENT

 WEBSITE AND DATABASE INTEGRATION

 SFDWD401 Integrate website with Database

Credits: 6 Learning hours: 60

Sector: ICT

Sub-sector: Software Development

Module Note Issue date: June, 2020

Purpose statement

This module describes the skills, knowledge, and attitudes required to connect database to the

web application, insert data, retrieve data, update data, and delete data into/ from a database

using SQL language.

By the end of this module the learner will be able to connect web application to a database, create

report to present summary information required.

Page 2 of 56

Table of Contents

Elements of competence and performance criteria Page No.

Learning Unit Performance Criteria

1. Connect to the database 1.1 Proper review of the importance and

strategies of database and website integration.

3

1.2 Selection of connection tools and platforms

according to the application specifications.

1.3 Proper connection of the database to a web

application using server-side script languages.

1.4 Effective connection management based on

transactions

2. Implement CRUD operations 2.1 correct data insertion using structured query

language (SQL) in reference to standard queries

16

2.2 Correct retrieval of the data in the most

appropriate control according to the information

requirements and display it to the web pages

2.3 Accurate data Update with user-supplied

input according to the information changes

2.4 correct data deletion from database according

to the information requirements

3. Create reports to present

summary information

3.1 Proper display of general data from database

according to information requirements.

28

3.2 Appropriate Creation of specific report based

on user- supplied input data

3.3 Clear preparation of customized and periodic

reports according to information requirements

Total Number of Pages: 55

Page 3 of 56

Learning Unit 1 – Connect to the database

LO 1.1 – Review the importance and strategies of website and database

integration

● Topic 1: Importance to integrate website with database

Database (DB): A database is a collection of information that is organized so that it can be easily

accessed, managed and updated. Computer databases typically contain aggregations of data

records or files, containing information about sales transactions or interactions with specific

customers.

What does Website mean?

A website is a collection of publicly accessible, interlinked Web pages that share a single domain

name. Websites can be created and maintained by an individual, group, business or

organization to serve a variety of purposes. Together, all publicly accessible websites constitute

the World Wide Web.

Database integration or data integration refers to combining a database with your web site so

that web visitors can add, remove and update information in your database using

a web browser. Most database integrated sites also allow users to search the database too.

https://searchsqlserver.techtarget.com/definition/information
https://searchsqlserver.techtarget.com/definition/flat-file

Page 4 of 56

3-tier architecture is a client-server architecture in which the functional process logic, data

access, computer data storage and user interface are developed and maintained as

independent modules on separate platforms. A “tier” in this case can also be referred to as a

“layer”.

 Presentation layer

Presentation Tier- The presentation tier is the front end layer in the 3-tier system and consists

of the user interface. This user interface is often a graphical one accessible through a web

browser or web-based application and which displays content and information useful to an end

user.

 Logic layer

The “business“ logic tier plays the role of transferring information between the website and the

data tier, including integration of the required decision logic or transformation of transferred

data (calculations, aggregation of information from more data sources and the like).

This might be written in C#, Java, C++, Python, Ruby, php, etc.

Its function includes:

 Performing all required calculations and validations

 Managing workflow o state management: to keep track of application execution

 Session management: to distinguish among application instances o user identification

 Service access: to provide application services in a consistent way managing all data

access for the presentation layer

 Data access layer

Page 5 of 56

The data storage tier implements persistent data storage, with a relational database (RDBMS)

or another type of database (NoSQL). A Data Access Layer (DAL) in computer software, is a

layer of a computer program which provides simplified access to data stored in persistent

storage of some kind, such as an entityrelational database.

It’s also responsible for managing updates, allowing simultaneous (concurrent) access from web

servers, providing security, ensuring the integrity of data, and providing support services such

as data backup. Importantly, a good database tier must allow quick and flexible access to

millions upon millions of facts.

 Topic 2: Strategies to integrate website with database

For connecting website with database you will need:

 Protocols

 Browser requests

 Web Server processes

 Web server responses

 A protocol is a set of rules and guidelines for communicating data. Rules are defined for

each step and process during communication between two or more computers.

Networks have to follow these rules to successfully transmit data.

There are various types of protocols that support a major and compassionate role in

communicating with different devices across the network. These are:

1. Transmission Control Protocol (TCP)

2. Internet Protocol (IP)

3. User Datagram Protocol (UDP)

4. Post office Protocol (POP)

5. Simple mail transport Protocol (SMTP)

6. File Transfer Protocol (FTP)

7. Hyper Text Transfer Protocol (HTTP)

8. Hyper Text Transfer Protocol Secure (HTTPS)

9. Telnet

10. Gopher

Page 6 of 56

Let's discuss each of them briefly:

1. Transmission Control Protocol (TCP): TCP is a popular communication protocol which is used

for communicating over a network. It divides any message into series of packets that are sent

from source to destination and there it gets reassembled at the destination.

2. Internet Protocol (IP): IP is designed explicitly as addressing protocol. It is mostly used with

TCP. The IP addresses in packets help in routing them through different nodes in a network

until it reaches the destination system. TCP/IP is the most popular protocol connecting the

networks.

3. User Datagram Protocol (UDP): UDP is a substitute communication protocol to Transmission

Control Protocol implemented primarily for creating loss-tolerating and low-latency linking

between different applications.

4. Post office Protocol (POP): POP3 is designed for receiving incoming E-mails.

5. Simple mail transport Protocol (SMTP): SMTP is designed to send and distribute outgoing E-

Mail.

6. File Transfer Protocol (FTP): FTP allows users to transfer files from one machine to another.

Types of files may include program files, multimedia files, text files, and documents, etc.

7. Hyper Text Transfer Protocol (HTTP): HTTP is designed for transferring a hypertext among two

or more systems. HTML tags are used for creating links. These links may be in any form like

text or images. HTTP is designed on Client-server principles which allow a client system for

establishing a connection with the server machine for making a request. The server

acknowledges the request initiated by the client and responds accordingly.

8. Hyper Text Transfer Protocol Secure (HTTPS): HTTPS is abbreviated as Hyper Text Transfer

Protocol Secure is a standard protocol to secure the communication among two computers

one using the browser and other fetching data from web server. HTTP is used for transferring

data between the client browser (request) and the web server (response) in the hypertext

format, same in case of HTTPS except that the transferring of data is done in an encrypted

format. So it can be said that https thwart hackers from interpretation or modification of data

throughout the transfer of packets.

Page 7 of 56

9. Telnet: Telnet is a set of rules designed for connecting one system with another. The

connecting process here is termed as remote login. The system which requests for connection

is the local computer, and the system which accepts the connection is the remote computer.

10. Gopher: Gopher is a collection of rules implemented for searching, retrieving as well as

displaying documents from isolated sites. Gopher also works on the client/server principle.

Some Other Protocols

Some other popular protocols act as co-functioning protocols associated with these primary

protocols for core functioning. These are:

 ARP (Address Resolution Protocol)

 DHCP (Dynamic Host Configuration Protocol)

 IMAP4 (Internet Message Access Protocol)

 SIP (Session Initiation Protocol)

 RTP (Real-Time Transport Protocol)

 RLP (Resource Location Protocol)

 RAP (Route Access Protocol)

 L2TP (Layer Two Tunnelling Protocol)

 PPTP (Point To Point Tunnelling Protocol)

 SNMP (Simple Network Management Protocol)

 TFTP (Trivial File Transfer Protocol)

 Browser requests: The browser sends an HTTP request message to the server, asking it

to send a copy of the website to the client (you go to the shop and order your goods).

This message, and all other data sent between the client and the server, is sent across

your internet connection using TCP/IP. The general idea though it that your browser

sends a request for a specific file, often an HTML file. The Hypertext Transfer Protocol

(HTTP) is designed to enable communications between clients and servers. HTTP works

as a request-response protocol between a client and server. A web browser may be the

client, and an application on a computer that hosts a web site may be the server.

 Web Server processes: A web server (or Web server) is server software, or hardware

dedicated to running said software, that can satisfy World Wide Web client requests. A

Page 8 of 56

web server can, in general, contain one or more websites. A web server processes

incoming network requests over HTTP and several other related protocols.

 Server responses: Your web browser (called the “client”) begins the exchange by

submitting a request to the web server for code, images, and other information.

... Server response codes, also called status codes, are feedback that your website is

built correctly and web server functioning as intended.

LO 1.2 – Select connection tools and platforms according to the application

specifications

Topic 1: Software specifications used for integrating database with website

 DBMSs to be used

DBMS stands for Database Management System; In other words, a system that manages

databases. Some of the popular DBMS are Oracle, SQL Server, MySQL, SQLite, and IBM DB2.

For our case, we will use MySQL

 Editors

An HTML editor is a specialized piece of software that assists in the creation of HTML code.

Similar to text editors such as Notepad, Sublime text, Notepad++, and TextEdit, HTML editors

allow users to enter raw text. Most (if not all) professional web developers use an HTML editor

to create and maintain their websites.

Software used to create and change Web pages (HTML-based documents). Low-level Web page

editors are used to write HTML code directly. High-level Web authoring programs provide

complete WYSIWYG design with the ability (in varying degrees) to switch back and forth

between the page layout and the HTML code. Web content editors are responsible for

planning, creating, editing and publishing information on websites.

 Browsers

Browser is a computer program with a graphical user interface for displaying HTML files, used to

navigate the World Wide Web. A web browser, or simply "browser," is an application used to

access and view websites. Common web browsers include Microsoft Internet Explorer, Google

Page 9 of 56

Chrome, Mozilla firefox, UC brouser, and Apple Safari. The primary function of a web browser is

to render HTML, the code used to design or "mark up" webpages.

● Topic 2: Identification of connection tools and platforms

 Middleware

Software that acts as a bridge between an operating system or database and applications,

especially on a network.

Middleware acts as a glue between different parts of an application made up of pure functions.

To better understand middlewares let's examine the functionalities of an Express.js (minimalist

web framework for Node.js) middleware. Infact Express.js is a framework based on middleware

and routes.

Common middleware examples include database middleware, application server middleware,

message-oriented middleware, web middleware and transaction-processing monitors.

 Server-side script language (JavaScript)

JavaScript (JS) is a scripting language, primarily used on the Web. It is used to enhance HTML

pages and is commonly found embedded in HTML code. JavaScript is an interpreted language.

Thus, it doesn't need to be compiled. JavaScript renders web pages in an interactive and

dynamic fashion.

What is a Scripting Language?

A script is a set of programming instructions that is interpreted at runtime.

A scripting language is a language that interprets scripts at runtime. Scripts are usually

embedded into other software environments. The purpose of the scripts is usually to enhance

the performance or perform routine tasks for an application.

Server side scripts are interpreted on the server while client side scripts are interpreted by the

client application.

PHP is a server side script that is interpreted on the server while JavaScript is an example of a

client side script that is interpreted by the client browser. Both PHP and JavaScript can be

embedded into HTML pages.

https://www.guru99.com/interactive-javascript-tutorials.html

Page 10 of 56

Programming Language Vs Scripting Language

 Middleware.

Software that acts as a bridge between an operating system or database and applications,
especially on a network.

Middleware acts as a glue between different parts of an application made up of pure functions.
To better understand middlewares let's examine the functionalities of an Express.js (minimalist
web framework for Node.js) middleware. Infact Express.js is a framework based on
middleware and routes.

Common middleware examples include database middleware, application server middleware,
message-oriented middleware, web middleware and transaction-processing monitors.

LO 1.3 – Connect database to a web application using server-side script

languages

● Topic 1: Make a database structure

Database structure: is the collection of record type and field type definitions that comprise

your database. Database design process consists of the following steps:

1. Determine the purpose of your database.

2. Find and organize the information required.

3. Divide the information into tables.

4. Turn information items into columns.

5. Specify primary keys.

6. Set up the table relationships.

Programming language Scripting language

Has all the features needed to develop

complete applications.

Mostly used for routine tasks

The code has to be compiled before it can

be executed

The code is usually executed without compiling

Does not need to be embedded into other

languages

Is usually embedded into other software

environments.

Page 11 of 56

7. Refine your design.

8. Apply the normalization rules.

 Tables

A database table consists of rows and columns. A database table is also called a two

dimensional array.

A table has a specified number of columns, but can have any number of rows. In database

terminology, each row is called a record

 Attributes and their data types

In general, an attribute is a characteristic of an entity. In a database management system

(DBMS), an attribute refers to a database component, such as a table. It also may refer to a

database field. Attributes describe the instances in the row of a database.

Types of Attribute Data. Attribute data can be store as one of five different field types in a table

or database: character, integer, floating, date, and BLOB. The character property (or string) is

for text based values such as the name of a street or descriptive values such as the condition of

a street.

Page 12 of 56

 Attributes’ constraints: Constraints are used to limit the type of data that can go into a

table. This ensures the accuracy and reliability of the data in the table. If there is any

violation between the constraint and the data action, the action is aborted.

Constraints can be column level or table level. Column level constraints apply to a column, and

table level constraints apply to the whole table.

The following constraints are commonly used in SQL:

i. NOT NULL - Ensures that a column cannot have a NULL value

ii. UNIQUE - Ensures that all values in a column are different

iii. PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely identifies each row

in a table

iv. FOREIGN KEY - Uniquely identifies a row/record in another table

v. CHECK - Ensures that all values in a column satisfies a specific condition

vi. DEFAULT - Sets a default value for a column when no value is specified

 Tables’ relationship

A table relationship is represented by a relationship line drawn between tables in the

Relationships window. A relationship that does not enforce referential integrity appears as a

thin line between the common fields supporting the relationship.

● Topic 2: Environment setup

Page 13 of 56

 Web browser

A web browser, or simply "browser," is an application used to access and view websites.

Common web browsers include Microsoft Internet Explorer, Google Chrome, Mozilla Firefox,

and Apple Safari. The primary function of a web browser is to render HTML, the code used to

design or "mark up" webpages.

 Database

A database is an organized collection of data, generally stored and accessed electronically from

a computer system. Where databases are more complex they are often developed using formal

design and modeling techniques

 Middleware

Why do we use middleware? Because the middleware is now the communication channel

between the systems, all monitoring of your integration takes place in one system. One of the

most crucial reasons that we use middleware is that it allows both systems to operate

independently.

● Topic 3: Description of connection string with authentication parameters

 Server

Server indicates which server to which database is hosted. It required because we are running

server-side scripting language. For our case it will be Localhost.

 User ID

When connecting to the server, you should indicate who want to connect (actually the

username.) USERNAME that typically is root.

 Password

When connecting to the server, the user should have user name as well as the password for

authentication. For our case the password will be empty.

● Topic 4: Selecting database name

After connecting to the server, you need to specify the database name to which you need to

access.

Page 14 of 56

// Get the mysql service

var mysql = require('mysql');

// Add the credentials to access your

database var connection =

mysql.createConnection({

host : 'localhost',

user : '<USERNAME that tipically is root>',

password : '<PASSWORD or just use null if youre working lcocally>', database

: '<DATABASE-NAME>' });
// connect to mysql

connection.connect(function(err)

{

// in case of error

if(err){

console.log(err.code);

console.log(err.fatal);

}

});

// Perform a query

$query = 'SELECT * from MyTable LIMIT 10';

connection.query($query, function(err, rows, fields) { if(err){

console.log("An error ocurred performing the
query."); return;

}

console.log("Query succesfully executed: ", rows);
});

// Close the connection

connection.end (function(){ // The

connection has been closed

});

Page 15 of 56

LO 1.4 – Manage connections based on transactions

 Topic 1: States of a connection.

Closed state connection

connection.end (function(){ // The connection has been closed });

The above code can be used to terminate an opened connection.

Opened state connection

To create a connection, an object is create and initialize to mysql.createConnection; and later

that object is used to establish connection “con.connection()”, where con is the object created

before.

var con = mysql.createConnection({

host: "localhost", user:

"yourusername", password:

"yourpassword", database:

"mydb"

});

con.connect(function(err) {

if (err) throw err;

console.log("Connected!");

 Connection error Handling

if (err) throw err; is used to handle error once it occur.

Page 16 of 56

Learning Unit 2 – Implement CRUD operations

LO 2.1 – Insert data into database using structured query language (SQL) in

reference to standard queries

● Topic 1: Preparing a query string

Specify values

Insert Into Table

To fill a table in MySQL, use the "INSERT INTO" statement.

Example

Insert a record in the "customers" table:

var mysql = require('mysql');

var con = mysql.createConnection({

host: "localhost", user:

"yourusername", password:

"yourpassword", database:

"mydb"

});

con.connect(function(err) {

if (err) throw err;

console.log("Connected!");

var sql = "INSERT INTO customers (name, address) VALUES ('Company Inc',
'Highway 37')";

con.query(sql, function (err, result) {

if (err) throw err;

console.log("1 record inserted");

});

});

Insert Multiple Records

Page 17 of 56

To insert more than one record, make an array containing the values, and insert a question
mark in the sql, which will be replaced by the value array: INSERT INTO customers (name,
address) VALUES ?

Example

Fill the "customers" table with data:

var mysql = require('mysql');

var con = mysql.createConnection({

host: "localhost", user:

"yourusername", password:

"yourpassword",

database: "mydb"

});

con.connect(function(err) {

if (err) throw err;

console.log("Connected!");

var sql = "INSERT INTO customers (name, address) VALUES ?"; var

values = [['John', 'Highway 71'],

['Peter', 'Lowstreet 4'],

['Amy', 'Apple st 652'],

['Hannah', 'Mountain 21'],

['Michael', 'Valley 345'],

['Sandy', 'Ocean blvd 2'],

['Betty', 'Green Grass 1'],

['Richard', 'Sky st 331'],

['Susan', 'One way 98'],

['Vicky', 'Yellow Garden 2'],

['Ben', 'Park Lane 38'],

['William', 'Central st 954'],

['Chuck', 'Main Road 989'],

Page 18 of 56

['Viola', 'Sideway 1633']

];

con.query(sql, [values], function (err, result) {

if (err) throw err;

console.log("Number of records inserted: " +

result.affectedRows); });

});

● Topic 2: Executing a query

Check if records are inserted

When executing a query, a result object is returned.

The result object contains information about how the query affected the table.

The result object returned from the example above looks like this:

{fieldCount: 0,

affectedRows: 14,

insertId:0,

serverStatus:2,

warningCount: 0,

message: '\'Records:14 Duplicated: 0 Warnings: 0',

protocol41: true, changedRows: 0

}

Get Inserted ID

For tables with an auto increment id field, you can get the id of the row you just inserted by
asking the result object.

Note: To be able to get the inserted id, only one row can be inserted.

Example

Insert a record in the "customers" table, and return the ID:

var mysql = require('mysql');

var con = mysql.createConnection({

host: "localhost", user:

"yourusername", password:

Page 19 of 56

"yourpassword", database:

"mydb"

});

con.connect(function(err) {

if (err) throw err;

var sql = "INSERT INTO customers (name, address) VALUES ('Michelle', 'Blue Village 1')";

con.query(sql, function (err, result) {

if (err) throw err;

console.log("1 record inserted, ID: " +

result.insertId); }); });

LO 2.2 – Retrieve and display data from database in the most appropriate control according

to the information requirements

● Topic 1: Preparing a query string

 Adding conditions

WHERE clause is used to extract only those records that fulfill a specified condition.

WHERE Syntax

SELECT column1, column2, ...

FROM table_name

WHERE condition;

 Using different SQL Clauses

SQL WHERE Clause

The WHERE clause is used to filter records.

The WHERE clause is used to extract only those records that fulfill a specified condition.

WHERE Syntax

SELECT column1, column2, ...

FROM table_name

WHERE condition;

SQL ORDER BY

The ORDER BY keyword is used to sort the result-set in ascending or descending order.

Page 20 of 56

The ORDER BY keyword sorts the records in ascending order by default. To sort the records in
descending order, use the DESC keyword.

ORDER BY Syntax

SELECT column1, column2, ...

FROM table_name

ORDER BY column1, column2, ... ASC|DESC;

SQL TOP, LIMIT or ROWNUM Clause The SQL SELECT TOP Clause

The SELECT TOP clause is used to specify the number of records to return.

The SELECT TOP clause is useful on large tables with thousands of records. Returning a large
number of records can impact on performance.

Note: Not all database systems support the SELECT TOP clause. MySQL supports the LIMIT
clause to select a limited number of records, while Oracle uses ROWNUM.

SQL Server / MS Access Syntax:

SELECT TOP number|percent column_name(s)

FROM table_name

WHERE condition;

MySQL Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition LIMIT

number;

Oracle Syntax:

SELECT column_name(s)

FROM table_name

WHERE ROWNUM <= number;

SQL TOP, LIMIT and ROWNUM Examples

Page 21 of 56

The following SQL statement selects the first three records from the "Customers" table:

Example

SELECT TOP 3 * FROM Customers;

The following SQL statement shows the equivalent example using the LIMIT clause:

Example

SELECT * FROM Customers LIMIT

3;

The following SQL statement shows the equivalent example using ROWNUM:

Example

SELECT * FROM Customers WHERE

ROWNUM <= 3;

SQL TOP PERCENT Example

The following SQL statement selects the first 50% of the records from the "Customers" table:

Example

SELECT TOP 50 PERCENT * FROM Customers;

ADD a WHERE CLAUSE

The following SQL statement selects the first three records from the "Customers" table, where
the country is "Germany":

Example

SELECT TOP 3 * FROM Customers WHERE

Country='Germany';

The following SQL statement shows the equivalent example using the LIMIT clause:

Example

SELECT * FROM Customers

WHERE Country='Germany' LIMIT

3;

Page 22 of 56

The following SQL statement shows the equivalent example using ROWNUM:

Example

SELECT * FROM Customers

WHERE Country='Germany' AND ROWNUM <= 3;

 Using functions and operators

SQL MIN() and MAX() Functions

The MIN() function returns the smallest value of the selected column.

The MAX() function returns the largest value of the selected column.

MIN() Syntax

SELECT MIN(column_name)

FROM table_name

WHERE condition;

MAX() Syntax

SELECT MAX(column_name)

FROM table_name

WHERE condition;

SQL COUNT(), AVG() and SUM() Functions

The COUNT() function returns the number of rows that matches a specified criteria.

The AVG() function returns the average value of a numeric column.

The SUM() function returns the total sum of a numeric column.

COUNT() Syntax

SELECT COUNT(column_name)

FROM table_name

WHERE condition;

Page 23 of 56

AVG() Syntax

SELECT AVG(column_name)

FROM table_name

WHERE condition;

SUM() Syntax

SELECT SUM(column_name)

FROM table_name

WHERE condition;

SQL AND, OR and NOT Operators

The WHERE clause can be combined with AND, OR, and NOT operators.

The AND and OR operators are used to filter records based on more than one condition:

The AND operator displays a record if all the conditions separated by AND is TRUE.

 The OR operator displays a record if any of the conditions separated by OR is TRUE.

The NOT operator displays a record if the condition(s) is NOT TRUE.

AND Syntax

SELECT column1, column2, ...

FROM table_name

WHERE condition1 AND condition2 AND condition3 ...;

OR Syntax

SELECT column1, column2, ...

FROM table_name

WHERE condition1 OR condition2 OR condition3 ...;

NOT Syntax

SELECT column1, column2, ...

FROM table_name

Page 24 of 56

WHERE NOT condition;

SQL LIKE Operator

The LIKE operator is used in a WHERE clause to search for a specified pattern in a column.

There are two wildcards used in conjunction with the LIKE operator:

• % - The percent sign represents zero, one, or multiple characters

• _ - The underscore represents a single character
Note: MS Access uses a question mark (?) instead of the underscore (_).

The percent sign and the underscore can also be used in combinations!

LIKE Syntax

SELECT column1, column2, ...

FROM table_name

WHERE columnN LIKE pattern;

Tip: You can also combine any number of conditions using AND or OR operators.

Here are some examples showing different LIKE operators with '%' and '_' wildcards:

LIKE Operator Description

WHERE CustomerName LIKE 'a%' Finds any values that start with "a"

WHERE CustomerName LIKE '%a' Finds any values that end with "a"

WHERE CustomerName LIKE '%or%' Finds any values that have "or" in any
position

WHERE CustomerName LIKE '_r%' Finds any values that have "r" in the second
position

WHERE CustomerName LIKE 'a_%_%' Finds any values that start with "a"
and are at

least 3 characters in length

WHERE ContactName LIKE 'a%o' Finds any values that start with "a" and
ends with "o"

SQL IN Operator

The IN operator allows you to specify multiple values in a WHERE clause.

Page 25 of 56

The IN operator is a shorthand for multiple OR conditions.

IN Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name IN (value1, value2, ...);

or:

SELECT column_name(s)

FROM table_name

WHERE column_name IN (SELECT STATEMENT);

SQL BETWEEN Operator

The BETWEEN operator selects values within a given range. The values can be numbers, text, or
dates.

The BETWEEN operator is inclusive: begin and end values are included.

BETWEEN Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name BETWEEN value1 AND value2;

● Topic 2: Executing a query

Check if records are found

app.get('/',(req,res)=>{

mysqlConnection.query('SELECT * FROM students WHERE RegN < 10 ORDER BY

FisrtName ASC',(err, rows, fields)=>{

if(!err)

res.send(rows); //This send results to the browser.

//console.log(rows); //This send results to the console.

else

Page 26 of 56

console.log(err);

})

})

● Topic 3: Creating an array of results

app.get('/',(req,res)=>{ mysqlConnection.query('SELECT * FROM students WHERE RegN
< 10

ORDER BY FisrtName ASC',(err, rows, fields)=>{

if(!err) res.send(rows); //This send results to the
browser.

//console.log(rows); //This send results to the console.

else

console.log(err);

})

})

LO 2.3 – Update data with user-supplied input according to the information changes

● Topic 1: Preparing a query string

The UPDATE statement is used to update existing records in a table:

 Adding conditions

Condition can be added using WHERE clause.

 Using different SQL Clauses

Seen with SELECT.

 Using functions and operators

Seen with SELECT.

 Topic 2: Executing a query

con.connect(function(err) {

if (err) throw err;

var sql = "UPDATE customers SET address = 'Canyon 123' WHERE address = 'Valley 345'";

con.query(sql, function (err, result) {

if (err) throw err;

Page 27 of 56

console.log(result.affectedRows + " record(s) updated");

});

});

 Check if records are updated

If (err) throw err;

console.log(result.affectedRows + " record(s) updated");

Notice the WHERE clause in the UPDATE syntax: The WHERE clause specifies which record or

records that should be updated. If you omit the WHERE clause, all records will be updated!

LO 2.4 – Delete data from database according to the information requirements

● Topic 1: Preparing a query string

You can delete records from an existing table by using the "DELETE FROM" statement.
 Preparing a query string

 Adding conditions

Condition can be added using WHERE clause.

 Using different SQL Clauses Seen with SELECT.

 Using functions and operators Seen with SELECT.

Topic 1: Executing a query

con.connect(function(err) {

if (err) throw err;

var sql = "DELETE FROM customers WHERE address = 'Mountain 21'";

con.query(sql,

function (err, result) {

if (err) throw err;

console.log("Number of records deleted: " +
result.affectedRows); });

});

 Check if records are deleted

if (err) throw err; console.log("Number of records deleted: " +
result.affectedRows);

Notice the WHERE clause in the DELETE syntax: The WHERE clause specifies which record or

records that should be deleted. If you omit the WHERE clause, all records will be deleted!

Page 28 of 56

Learning Unit 3 – Create reports to present summary information

LO 3.1 – Display general data from database according to the information

requirements

● Topic 1: Loops in Arrays

 The While Loop: The while loop loops through a block of code as long as a specified

condition is true.

Syntax:

while (condition) {

code block to be executed

}

Example: In the following example, the code in the loop will run, over and over again, as long as

a variable (i) is less than 10:

Example:

while (i < 10) {

text += "The number is " + i;

 i++;

}

Note: If you forget to increase the variable used in the condition, the loop will never end. This

will crash your browser.

 The Do/While Loop: The do/while loop is a variant of the while loop. This loop will

execute the code block once, before checking if the condition is true, then it will repeat

the loop as long as the condition is true.

Syntax:

 do {

code block to be executed

}

while (condition);

Page 29 of 56

Example: The example below uses a do/while loop. The loop will always be executed at least

once, even if the condition is false, because the code block is executed before the condition is

tested:

Example:

do {

text += "The number is " + i; i++;

} while (i < 10);

 For each loop

The forEach() method calls a function once for each element in an array, in order.

var fruits = ["apple", "orange", "cherry"];

fruits.forEach(myFunction);

function myFunction(item, index) {

document.getElementById("demo").innerHTML += index + ":" + item + "
"; }

Syntax array.forEach(function(currentValue, index, arr), thisValue)

Get the sum of all the values in the array:

var sum = 0; var numbers =

 [65, 44, 12, 4];

numbers.forEach(myFunction);

function myFunction(item) {

sum += item;

document.getElementById("demo").innerHTML = sum;

}

Example

For each element in the array: update the value with 10 times the original value:

var numbers = [65, 44, 12, 4];

numbers.forEach(myFunction)

function myFunction(item, index, arr) {

arr[index] = item * 10; }

● Topic 2: Data presentation in HTML tables

Page 30 of 56

You're asked to build an HTML table with JavaScript. Starting from an array of "mountains" your
task is to generate the table assigning every key to a column and one row per object.

Every object has the following shape:

{ name: "Monte Falco", height: 1658, place: "Parco Foreste Casentinesi" }

We have a name, an height and a place in which the peak is located in. But what makes an
HTML table? An HTML table is an element containing tabular data, presented in rows and
columns. That means given the following array:

let mountains = [

{ name: "Monte Falco", height: 1658, place: "Parco Foreste Casentinesi" },

{ name: "Monte Falterona", height: 1654, place: "Parco Foreste Casentinesi"

}

];

We are expecting to generate the following table:

<table>

<thead>

<tr>

<th>name</th>

<th>height</th>

<th>place</th>

</tr>

</thead>

<tbody>

<tr>

<td>Monte Falco</td>

<td>1658</td>

<td>Parco Foreste Casentinesi</td>

</tr>

<tr>

<td>Monte Falterona</td>

<td>1654</td>

<td>Parco Foreste Casentinesi</td>

Page 31 of 56

</tr>

</tbody>

</table>

As you can see the table has a thead (table head) containing a tr (table row) which in turn
contains three th (table header).

Then there's the tbody (table body) containing a bunch of tr (table rows). Each table row
contains a certain number of td elements (table cells).

With these requirements in place we can start coding our JavaScript file. Our starting point can
be the following HTML:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8"> <title>Build a

table</title>

</head> <body>

<table>

<!-- here goes our data! -->

</table>

</body>

<script src="build-table.js"></script> </html>

Save the file as build-table.html and go ahead to the next section!

How to generate a table with JavaScript: generating the table head

Create a new file named build-table.js in the same folder as build-table.html and start the file
with the following array:

let mountains = [

{ name: "Monte Falco", height: 1658, place: "Parco Foreste Casentinesi" },

{ name: "Monte Falterona", height: 1654, place: "Parco Foreste Casentinesi" },

{ name: "Poggio Scali", height: 1520, place: "Parco Foreste

Casentinesi"

},

{ name:

"Pratomagno", height: 1592, place: "Parco Foreste Casentinesi" },

Page 32 of 56

{ name: "Monte Amiata", height: 1738, place: "Siena" }]

Our first goal is to generate the table head. But let's think a moment about it. We know that
the native method createElement() creates whatever element we pass to it. Say we want to
create a table head, we can do document.createElement('thead'). But do we have a better
alternative?

Let's head over to MDN, at the element table reference. You can see that the DOM interface for
table is HTMLTableElement.

The interesting thing for HTMLTableElement is the methods it exposes. Among the methods
there is createTHead(). Bingo! createTHead returns the table head element associated with a
given table, but better, if no header exists in the table, createTHead creates one for us.

Armed with this knowledge let's create a function in our file, taking the table as a parameter.
Given the table we can create a new thead inside it:

function
generateTableHead(table)

{

let

thead = table.createTHead(); }

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table

Page 33 of 56

Now let's grab our table (remember we have one in build-table.html) and pass that to our
function:

function generateTableHead(table) { let thead =
table.createTHead();

}let table = document.querySelector("table");
generateTableHead(table);

If you call build-table.html in a browser you'll see nothing on the screen but the developer
console will show you a thead right inside the table. We're half way down to populating the
table head. We saw that the table head contains a row filled with a bunch of th (table headers).
Every table header must map to a key describing what our data is made of.

The information is already there, inside the first object in the mountain array. We can iterate
over the keys of the first object:

let mountains = [

{ name: "Monte Falco", height: 1658, place: "Parco Foreste Casentinesi" },

//];

and generate three table headers with said keys. But first we need to add a row to our thead!
How? document.createElement('tr')? No no. Our HTMLTableRowElement is kind enough to
offer an insertRow() method, to be called on our table header. Let's refactor a bit our
generateTableHead function:

function generateTableHead(table) { let

thead = table.createTHead(); let row =

thead.insertRow(); }

And while we're there let's think of populating the table head. The new row should contain
three th (table headers). We need to create these th elements manually and for each th (table
header) we will append a text node. Our function can take another parameter to iterate over:

function generateTableHead(table, data) { let

thead = table.createTHead(); let row =

thead.insertRow(); for (let key of data) {

let th = document.createElement("th"); let text =

document.createTextNode(key); th.appendChild(text);

row.appendChild(th);

}

} let table = document.querySelector("table"); let data

Page 34 of 56

= Object.keys(mountains[0]);
generateTableHead(table, data);

Save the file and refresh build-table.html: you should see your table head being populated with
name, height and place as table headers. Congratulations! Sometimes it feels so good to take a
break from React and Vue just for the sake of recalling how hard and cumbersome direct
DOM manipulation is. But stay here! We're not done yet.

Time to populate the table ...

How to generate a table with JavaScript: generating rows and cells

For populating the table we will follow a similar approach but this time we need to iterate over
every object in the array of mountains. And while we're inside the for...of loop we will create a
new row for every item.

For creating rows you will use insertRow().

But we cannot stop here. Inside the main loop we need an inner loop, this time a for...in. The
inner loop iterates over every key of the current object and in the same time it:

• creates a new cell

• creates a new text node

• appends the text node to the cell

The cells are created with another useful method of HTMLTableRowElement, insertCell().

That is, with the logic above we can populate our table. Open up build-table.js and create a
new function named generateTable. The signature can be the same as our existing function:

function generateTable(table, data) { for (let

element of data) { let row =

table.insertRow(); for (key in element) {

let cell = row.insertCell();

let text =
document.createTextNode(element[key]);

cell.appendChild(text);

}

} }

To run this function you will call it like so:

https://developer.mozilla.org/en-US/docs/Web/API/HTMLTableRowElement

Page 35 of 56

generateTable(table, mountains);

Let's take a look at the complete code:

let mountains = [

{ name: "Monte Falco", height: 1658, place: "Parco Foreste Casentinesi" },

{ name: "Monte

Falterona", height: 1654, place: "Parco Foreste Casentinesi"

},

{ name: "Poggio Scali", height: 1520, place: "Parco Foreste

"Pratomagno", height: 1592, place: "Parco Foreste Casentinesi" },

{ name: "Monte Amiata", height: 1738, place: "Siena" }

];

function generateTableHead(table, data) { let

thead = table.createTHead(); let row =

thead.insertRow(); for (let key of data) {

let th = document.createElement("th");

let text = document.createTextNode(key);

th.appendChild(text); row.appendChild(th);

}

Casentinesi"

},

{ name:

Page 36 of 56

} function generateTable(table, data) { for

(let element of data) { let row =

table.insertRow(); for (key in element) {

let cell = row.insertCell();

cell.appendChild(text);

}

}

} let table = document.querySelector("table"); let data
= Object.keys(mountains[0]);

generateTableHead(table, data); generateTable(table,
mountains);

Do you think it works? Let's give it a shot:

Page 37 of 56

Wow. It looks like our rows are being appended to the table head rather than to the table body.

Also, there is no table body!

But what happens if we switch the functions order? Let's try:

// omitted for brevity

let table = document.querySelector("table"); let data

= Object.keys(mountains[0]);

generateTable(table, mountains); // generate the table first

generateTableHead(table, data); // then the head and refresh the browser again:

Page 38 of 56

It works! Plus we'got a tbody (table body) for free. How so? When you call

insertRow() on an empty table the methods takes care of creating a tbody for you

(if none is present).

Well done! Our code may not be well organized (too many global bindings) but

we'll come to that in one of the next posts.

By now you should be able to manipulate HTML tables without any external library.

● Topic 3: Pagination and paragraphing

Pagination, also known as paging, is the process of dividing a document into

discrete pages, either electronic pages or printed pages.

Paragraphing (to make paragraph-ending decisions), and automated pagination

(to make pagebreaking decisions).

HTML CODES

<script type="text/javascript">

function previous(){

https://en.wikipedia.org/wiki/Page_(paper)

Page 39 of 56

new_page = parseInt($('#current_page').val()) - 1;

//if there is an item before the current active link run the function

if($('.active_page').prev('.page_link').length==true){

go_to_page(new_page);

}

}

function next(){ new_page = parseInt($('#current_page').val()) + 1; //if there is an item after the

current active link run the function if($('.active_page').next('.page_link').length==true){

go_to_page(new_page);

}

}

function go_to_page(page_num){

//get the number of items shown per page var

show_per_page = parseInt($('#show_per_page').val());

//get the element number where to start the slice from start_from

= page_num * show_per_page;

//get the element number where to end the slice

end_on = start_from + show_per_page;

//hide all children elements of content div, get specific items and show them

$('#content').children().css('display', 'none').slice(start_from, end_on).css('display', 'block');

/*get the page link that has longdesc attribute of the current page and add active_page

class to it

and remove that class from previously active page link*/

$('.page_link[longdesc=' + page_num

+']').addClass('active_page').siblings('.active_page').removeClass('active_page');

//update the current page input field

$('#current_page').val(page_num);

}

</script>

Page 40 of 56

<!-- the input fields that will hold the variables we will use -->

<input type='hidden' id='current_page' />

<input type='hidden' id='show_per_page' />

<!-- Content div. The child elements will be used for paginating(they don't have to be all

the same, you can use divs, paragraphs, spans, or whatever you like mixed together). '-->

<div id='content'>

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Lorem ipsum dolor sit amet,

consectetur adipiscing elit. </p>

<p>Vestibulum consectetur ipsum sit amet urna euismod imperdiet aliquam urna laoreet.

Lorem ipsum dolor sit amet, consectetur adipiscing elit.</p>

<p>Curabitur a ipsum ut elit porttitor egestas non vitae libero. Lorem ipsum dolor sit

amet, consectetur adipiscing elit. Lorem ipsum dolor sit amet, consectetur adipiscing elit.</p>

<p>Pellentesque ac sem ac sem tincidunt euismod. Lorem ipsum dolor sit amet,

consectetur adipiscing elit.</p>

<p>Duis hendrerit purus vitae nibh tincidunt bibendum. Lorem ipsum dolor sit amet,

consectetur adipiscing elit.</p>

<p>Nullam in nisi sit amet velit placerat laoreet. Lorem ipsum dolor sit amet, consectetur

adipiscing elit.</p>

<p>Vestibulum posuere ligula non dolor semper vel facilisis orci ultrices. Lorem ipsum

dolor sit amet, consectetur adipiscing elit. Lorem ipsum dolor sit amet, consectetur adipiscing

elit.</p>

<p>Donec tincidunt lorem et dolor fringilla ut bibendum lacus fringilla. Lorem ipsum dolor

sit amet, consectetur adipiscing elit.</p>

<p>In non eros eu lacus vestibulum sodales.</p>

<p>Duis ultrices metus sit amet sem adipiscing sit amet blandit orci convallis.</p>

<p>Proin ullamcorper est vitae lorem mollis bibendum.</p>

<p>Maecenas congue fringilla enim, tristique laoreet tortor adipiscing eget.</p>

<p>Duis imperdiet metus et lorem venenatis nec porta libero porttitor.</p>

<p>Maecenas lacinia lectus ac nulla commodo lacinia.</p>

<p>Maecenas quis massa nisl, sed aliquet tortor.</p>

<p>Quisque porttitor tellus ut ligula mattis luctus.</p>

Page 41 of 56

<p>In at mi dolor, at consectetur risus.</p>

<p>Etiam id erat ut lorem fringilla dictum.</p>

<p>Curabitur sagittis dolor ac nisi interdum sed posuere tellus commodo.</p>

<p>Pellentesque quis magna vitae quam malesuada aliquet.</p>

<p>Curabitur tempus tellus quis orci egestas condimentum.</p>

<p>Maecenas laoreet eros ac orci adipiscing pharetra.</p>

<p>Nunc non mauris eu nibh tincidunt iaculis.</p>

<p>Ut semper leo lacinia purus hendrerit facilisis.</p> <p>Praesent et

eros lacinia massa sollicitudin consequat.</p> <p>Proin non mauris in

sem iaculis iaculis vel sed diam.</p> <p>Nunc quis quam pulvinar nibh

volutpat aliquet eget in ante.</p> <p>In ultricies dui id libero pretium

ullamcorper.</p> <p>Morbi laoreet metus vitae ipsum lobortis

ultrices.</p>

<p>Donec venenatis egestas arcu, quis eleifend erat tempus ullamcorper.</p>

<p>Morbi nec leo non enim mollis adipiscing sed et dolor.</p> <p>Cras non

tellus enim, vel mollis diam.</p>

<p>Phasellus luctus quam id ligula commodo eu fringilla est cursus.</p>

<p>Ut luctus augue tortor, in volutpat enim.</p> <p>Cras bibendum ante

sed erat pharetra sodales.</p>

<p>Donec sollicitudin enim eu mi suscipit luctus posuere eros imperdiet.</p>

<p>Vestibulum mollis tortor quis ipsum suscipit in venenatis nulla fermentum.</p>

<p>Proin vehicula suscipit felis, vitae facilisis nulla bibendum ac.</p> <p>Cras iaculis

neque et orci suscipit id porta risus feugiat.</p>

<p>Suspendisse eget tellus purus, ac pulvinar enim.</p>

<p>Morbi hendrerit ultrices enim, ac rutrum felis commodo in.</p>

<p>Suspendisse sagittis mattis sem, sit amet faucibus nisl fermentum vitae.</p>

<p>Nulla sed purus et tellus convallis scelerisque.</p>

<p>Nam at justo ut ante consectetur faucibus.</p>

<p>Proin dapibus nisi a quam interdum lobortis.</p>

<p>Nunc ornare nisi sed mi vehicula eu luctus mauris interdum.</p>

<p>Mauris auctor suscipit tellus, at sodales nisi blandit sed.</p>

Page 42 of 56

</div>

<!-- An empty div which will be populated using jQuery -->

<div id='page_navigation'></div>

CSS CODES

#content { min-height:

250px; border: 1px

solid #ccc;

background: #f9f9f9;

padding: 20px;

margin: 20px; border-

radius: 10px;

}

#content p {

padding: 15px;

}

#page_navigation {

margin: 0 20px;

}

#page_navigation a{

padding:3px; border:1px

solid gray; margin:2px;

color:black;

text- decoration:none

}

.active_page{

background:darkblue; color:white

!important;

}

JS CODES

Page 43 of 56

$(document).ready(function(){

//how much items per page to show

var show_per_page = 5;

//getting the amount of elements inside content div var

number_of_items = $('#content').children().size(); //calculate the

number of pages we are going to have var number_of_pages =

Math.ceil(number_of_items/show_per_page);

//set the value of our hidden input fields

$('#current_page').val(0);

$('#show_per_page').val(show_per_page);

//now when we got all we need for the navigation let's make it '

/*

what are we going to have in the navigation?

- link to previous page

- links to specific pages

- link to next page

*/

var navigation_html = '<a class="previous_link"

href="javascript:previous();">Prev'; var

current_link = 0; while(number_of_pages >

current_link){

navigation_html += '<a class="page_link" href="javascript:go_to_page(' + current_link +')"

longdesc="' + current_link +'">'+ (current_link + 1) +''; current_link++;

}

navigation_html += 'Next';

$('#page_navigation').html(navigation_html);

//add active_page class to the first page link

$('#page_navigation .page_link:first').addClass('active_page');

//hide all the elements inside content div

$('#content').children().css('display', 'none');

Page 44 of 56

//and show the first n (show_per_page) elements

$('#content').children().slice(0, show_per_page).css('display', 'block');

});

● Topic 4: Data in form elements

Form elements may include textareas, selects, radio buttons and

checkboxes. <form action="index.php" id="form_name" method="post" >

Use below code to get all form element by JS :-

document.forms["form_name"].getElementsByTagName("input")

;

Note:- Above Code will work only if you don't have selects or textareas in your

form. If you have assigned id in DOM element like below,

<input type="text" name="name" id="uniqueID" value="value" />

Then you can access it via below code:- Javascript:-

var nameValue = document.getElementById("uniqueID").value;

If you have Radio button in your form, then use below code:-

<input type="radio" name="radio_name" value="1" > 1

<input type="radio" name="radio_name" value="0" > 0

Javascript:-

var radios = document.getElementsByName('radio_name');

for (var i = 0, length = radios.length; i < length; i++) { if (radios[i].checked)

{

// do whatever you want with the checked radio alert(radios[i].value);

// only one radio can be logically checked, don't check the rest break;

} }

LO 3.2 – Create specific report based on user-supplied input data

Page 45 of 56

● Topic 1: User input data handling

Data from a form can be processed by a script in the same page, or they may be sent to another

page when the values are used to define the content of this page.

In a previous article we saw how to pass data from one HTML page to another. This article will

explain in more detail the use of form to submit data to a page or a script on the server.

Form data are used in the page, or another one

When the values are processed by a script in the same page that contains the form (or an

included file), the action attribute of the object form has no value.

<form action="" >

To button that sends the data, is associated in this case an onClick event that calls the JavaScript

function defined to process the values of the form.

<script type="text/javascript">

processForm() { ... }

function

https://www.xul.fr/javascript/parameters.php

Page 46 of 56

</script><input type="button" onClick="processForm()" > The form may

also be sent bu an image field.

To access the elements locally, they are identified by a string made of the word document, the

name of the form, name of the object, and the attribute value.

If a form has for name attribute "myform", a text field named "mytext", the value is accessed as

follows:

var x = document.myform.mytext.value;

Action is assigned the name of a file to send data

When, on the contrary we want to transmit values to another page or a script, we assign the file

name to the attribute action:

<form method="GET" action="myfiler.php">

That file is an HTML or PHP page or a script in another language, it makes no difference at

sending, it is only the processing of the values that is different.

However it remains to define how values are extracted from elements of the form according to

the type of object.

Name and values of form objects are transmitted

The transmission of values has a single general form, but the operating principles can depend

on the object.

In most cases, the attributes name and value are used to build a string that is transmitted ar

parameter to the target.

<input type="text" name="mytext" value="some texte">

gives the string:

mytext=some+texte

The variables are separated by the & symbol and the whole is separated from the file name by

the ? symbol.

Example: myfile.php?mytext=some+text&checkbox=cb1

This string of parameters is built automatically, you have just to assign the file name to the

action attribute of the form.

Special case are:

1. Text boxes.

Page 47 of 56

It is the content of the tag which is the

value <input type="textarea">Content</>

2. Checkboxes.

3. The name and the value are transmitted when the box is checked, or if checked was

added to the definition and that the user does not unchecks the case. Otherwise the

item is ignored, nothing is transmitted.

4. Radio buttons groups. Radio buttons in a group have the same name, such as "Radio"

and a specific value, such as "Radio1", "Radio2", etc..

The name "Radio" is transmitted with the value of the selected button, for

example: radio=radio2 if the second button is selected.

5. Menus and lists.They contain several option tags. It is the content of the selected option

tag which forms the value associated with the name of the list.

6. Image field. When you click on a image field, it sends form data. For the the

image field, two values x and y are created for the the position where you clicked in the

image.

For example, if the name is "image", and that you click into position x = 10 and y = 20,

the following string will be transmitted:

image.x=10&image.y=20

The demonstration allows for interactive tests on all case of transmission of values.

Case of checkboxes

The checkbox is an issue when it is not checked, if the script that receives the values needs for

all the elements of the form, since nothing is transmitted in this case. One can easily circumvent

this problem by assigning the value field with the onClick event.

We want the checkbox "cb" has a value "yes" when it is checked and "no" when it is not. We

initialize the value which corresponds to the initial state, if it is checked, with "yes".

<input type="checkbox" name="cb" value="yes" checked onClick="cbChange(this)" >

A function updates the value when the state of the checkbox changes:

Page 48 of 56

function cbChange(element)

{ if(element.checked)

element.value="yes"; else

element.value="no"; }

We'll see now how the values sent are retrieved by the page that receives them.

Receiving the values

The parameters associated with the URL of a page is assigned to the search attribute of the

location object. The string may be viewed with the following JavaScript script, which is used in

our demonstration.

function receive()

{

var parameters = location.search;

document.getElementById("string").innerHTML = parameters; }

window.onload=receive;

The "string" name is the ID of the tag where we will store the parameter string to view it.

To isolate the elements of this string of parameterd, we proceed in 3 steps:

1. The symbol ? is skipped by a call to substring method. location.search.substring(1)

2. The string is cutted in elements on the & separator and the split

method. location.search.substring(1).split("&");

3. Each name and value of component are separated in the same way.

The complete script becomes:

var parameters = location.search.substring(1).split("&"); var data = "";

for (x in parameters)

{

var temp = parameters[x].split("="); thevar =

unescape(temp[0]); thevalue = unescape(temp[1]);

Page 49 of 56

thevalue = thevalue.replace("+", " "); data += thevar +

"=" + thevalue + "
";

} document.getElementById("data").innerHTML = data;

The elements of the parameters string become elements of where the index is x. This gives the

names and values, in the example, they are concatenated in the data variable to be displayed.

If the data are sent to a PHP script on the server, or a page with PHP code, they will be available

in the global variables $_GET or $_POST depending on the method used. There are associative

arrays.

Data are recovered by the keys. For example, from this HTML code:

<form method="POST" action="xxx.php">

<input type="text" name="login" value="xxx" /> </form>

The PHP code is:

$login = $_POST['login'];

● Topic 2: Input processing using form methods

 GET method

<FORM NAME="myform" ACTION="" METHOD="GET">

Enter something in the box:

<INPUT TYPE="text" NAME="inputbox" VALUE=""><P>

<INPUT TYPE="button" NAME="button" Value="Click" onClick="testResults(this.form)">

</FORM>

• FORM NAME="myform" defines and names the form. Elsewhere in the JavaScript you

can reference this form by the name myform. The name you give your form is up to you,

but it should comply with JavaScript's standard variable/function naming rules (no

spaces, no weird characters except the underscore, etc.).

• ACTION="" defines how you want the browser to handle the form when it is submitted

to a CGI program running on the server. As this example is not designed to submit

anything, the URL for the CGI program is omitted.

Page 50 of 56

• METHOD="GET" defines the method data is passed to the server when the form is

submitted. In this case the atttibute is puffer as the example form does not submit

anything.

• INPUT TYPE="text" defines the text box object. This is standard HTML markup.

• INPUT TYPE="button" defines the button object. This is standard HTML markup except

for the onClick handler.

• onClick="testResults(this.form)" is an event handler -- it handles an event, in this case

clicking the button. When the button is clicked, JavaScript executes the expression

within the quotes. The expression says to call the testResults function elsewhere on the

page, and pass to it the current form object.

Listing 1. testform.html

<HTML>

<HEAD>

<TITLE>Test Input</TITLE> <SCRIPT

LANGUAGE="JavaScript">

function testResults (form) { var

TestVar = form.inputbox.value;

alert ("You typed: " + TestVar);

}

</SCRIPT>

</HEAD>

<BODY>

<FORM NAME="myform" ACTION="" METHOD="GET">Enter something in the box:

<INPUT TYPE="text" NAME="inputbox" VALUE=""><P>

<INPUT TYPE="button" NAME="button" Value="Click" onClick="testResults(this.form)">

</FORM>

</BODY>

</HTML>

Listing 2. set_formval.html

Page 51 of 56

<HTML>

<HEAD>

<TITLE>Test Input </TITLE>

<SCRIPT LANGUAGE="JavaScript">

function readText (form) {

TestVar =form.inputbox.value;

alert ("You typed: " + TestVar);

} function writeText (form) {

form.inputbox.value = "Have a nice day!"

}

</SCRIPT>

</HEAD>

<BODY>

<FORM NAME="myform" ACTION="" METHOD="GET"> Enter

something in the box:

<INPUT TYPE="text" NAME="inputbox" VALUE=""><P>

<INPUT TYPE="button" NAME="button1" Value="Read" onClick="readText(this.form)">

<INPUT TYPE="button" NAME="button2" Value="Write" onClick="writeText(this.form)">

</FORM>

</BODY>

</HTML>

LO 3.3 – Prepare customized and periodic reports according to application specifications

● Topic 1: Custom parameters

 Start parameter

 End parameter

● Topic 2: Methods for sending Data

 GET method

Page 52 of 56

The GET method requests a representation of the specified resource. Requests using GET
should only retrieve data and should have no other effect.

 POST method

The POST method requests that the server accept the data enclosed in the request as a new
object/entity of the resource identified by the URI.

● Topic 3: Form attributes

 Action: This attribute specify the file to which the form data are sent for being
processed/handled.

 Method

 Enctype

● Topic 3: Report format according to the application specifications.

This is an example of an HTML form:

<form method="POST" action="/submit-form">

<input type="text" name="username" />

<input type="submit" />

</form>

When the user presses the submit button, the browser will automatically make a POST request
to the /submit-form URL on the same origin of the page. The browser sends the data contained,
encoded as application/x-www-form-urlencoded. In this particular example, the form data
contains the username input field value.

Forms can also send data using the GET method, but the vast majority of the forms you’ll build
will use POST.

The form data will be sent in the POST request body.

To extract it, you will need to use the express.urlencoded() middleware, provided by Express:

const express = require('express') const

app = express()

app.use(express.urlencoded())

Now, you need to create a POST endpoint on the /submit-form route, and any data will be
available on Request.body:

app.post('/submit-form', (req, res) => {

const username = req.body.username

//...

res.end() })

Don’t forget to validate the data before using it, using express-validator.

Forms are an integral part of the web. Almost every website we visit offers us forms that submit
or fetch

Page 53 of 56

some information for us. To get started with forms, we will first install the bodyparser(for
parsing JSON

and url-encoded data) and multer(for parsing multipart/form data) middleware.

To install the body-parser and multer, go to your terminal and use − npm install --save body-

parser multer

Replace your index.js file contents with the following code −

var express = require('express'); var

bodyParser = require('body-parser'); var

multer = require('multer'); var upload =

multer();

var app = express();

app.get('/', function(req, res){

res.render('form');

});

app.set('view engine', 'pug');

app.set('views', './views');

// for parsing

application/json

app.use(bodyParser.jso

n());
// for parsing application/xwww-

app.use(bodyParser.urlencoded({ extended:

true })); //form-urlencoded

// for parsing multipart/form-data
app.use(upload.array());
app.use(express.static('public'));
app.post('/', function(req, res){
console.log(req.body);

res.send("recieved your request!");

}); app.listen(3000);

After importing the body parser and multer, we will use the body-parser for parsing json and

xwww-form-urlencoded header requests, while we will use multer for parsing

multipart/formdata.

Let us create an html form to test this out. Create a new view called form.pug with the
following code −

Page 54 of 56

html html

head

title Form Tester

body

div

br

form(action = "/", method = "POST")

label(for = "say") Say:

input(name = "say" value = "Hi")

div label(for = "to") To:

Page 55 of 56

input(name = "to" value = "Express forms")

br

button(type = "submit") Send my greetings

Run your server using the following.

nodemon index.js

Now go to localhost:3000/ and fill the form as you like, and submit it.

NPM (node package manager) is a package manager for the JavaScript programming language.

It is the default package manager for the JavaScript runtime environment Node.js. It consists of a

command line client, also called npm, and an online database of public and paid-for private

packages, called the npm registry.

Page 56 of 56

Reference(s):

1. https://www.webslesson.info/2016/10/ajax-with-php-mysql-date-range-search-using-

jquery-datepicker.html

2. Learn PHP, MYSQL, JavaScript-with jQuery, CSS & HTML5, 4 edition, Robin Nixon

3. HTML, XHTML, & CSS ALL-IN-ONE for dummies, 2nd edition, Andy Harris

4. How to Do Everything with PHP and MySQL (McGraw-Hill, 2005, 0-07-146654-1), Vikran

Wasani

5. https://www.formget.com/update-data-in-database-using-php/

6. https://www.tutorialspoint.com/php/php_validation_example.htm

7. https://www.w3schools.com/php/php_mysql_prepared_statements.asp

https://www.webslesson.info/2016/10/ajax-with-php-mysql-date-range-search-using-jquery-datepicker.html
https://www.webslesson.info/2016/10/ajax-with-php-mysql-date-range-search-using-jquery-datepicker.html

