
Page 1 of 146

TVET CERTIFICATE V in SOFTWARE DEVELOPMENT

 T T T S R 1 0 3 DATABASE DEVELOPMENT

 SFDDD501 Develop a database

Learning hours: 120

Credits: 12

Sector: ICT

Sub-sector: Software Development

Module Note Issue date: June, 2020

 Purpose statement

This module covers the skills, knowledge and attitude to maintain a website which facilitates the

requirement as a front-end website developer. The module will allow the learner to resolve website

issues, to respond to the customer requests, to add new features and to execute customer service

support.

Page 2 of 146

Table of Contents

Elements of competence and performance criteria

Learning Unit Performance Criteria

1.Perform database structure

1.1.Proper introduction to SQL 2

1.2. Effective creation of database

1.3. Accurate creation of tables with attributes

1.4. Proper use of SQL constraints

1.5. Neat refining of Database Design

2. Apply DML queries 2.1. Proper execution of database insert
 operation

37

2.2. Correct retrieval of row and column data
 from tables using SELECT statement

2.3. Proper creation of reports of sorted and
 restricted data

2.4. Proper use of single row functions to
 generate and retrieve customized data

2.5. Appropriate report aggregated data using
 group functions

2.6. Correct retrieval of data from multiple tables
 using joins

2.7. Correct use of subqueries to solve problems

2.8. Correct use of set operators

2.9. Correct use of data manipulation language
(DML) statements to update table data

2.10. Proper execution of database procedures
 procedures, index

3. Interact with database 3.1. Proper identification of different data file
 formats

88

3.2. Proper correlation of data format
 and database

3.3. Proper execution of import of data from
 external source

3.4. Proper execution of export of data to
 external source

Total Number of Pages: 146

Page 3 of 146

Learning Unit 1-Perform database structure

Learning Outcome1.1: Introduce Structured Query Language

 Content/Topic 1: Introduction to Structured Query Language

Prerequisites

Before you start practicing with various types of examples given in this module, I am assuming that

you are already aware about basics and fundamentals of database and what is a computer

programming language.

SQL Editor

When you interact with MS SQL Server databases, you mostly do it by writing, editing, and

executing SQL queries, statements, stored procedures, and scripts. A good SQL editor will help with

database interaction by providing syntax highlighting, robust code completion functionality, the

ability to get information about function parameters, and other features that make your coding

experience more efficient.

In this module I used Microsoft SQL Server Management Studio but don’t worry because the

queries I used work in both SQL Server and MySQL, I also showed it when there is a difference.

Download XAMPP for Windows on this link https://www.apachefriends.org/index.html and use

MySQL SQL Editor which contains MariaDB. There are many other SQL editors that you can use like

MySQL workbench, dbForge, Studio, DBeaver.

A. Definition of the abbreviation “Structured Query Language (SQL)”

SQL is Structured Query Language, which is a database computer language for storing,

manipulating and retrieving data stored in a relational database.SQL is the standard language for

Relational Database System. All Relational Database Management Systems (RDMS) like MySQL, MS

Access, Oracle, Sybase, Informix, Postgres and SQL Server use SQL as their standard database

language.SQL is widely popular because it can execute queries against a database, retrieve data ,

insert records, update records, delete records from a database, create new databases, create new

tables in a database, create stored procedures in a database, create views in a database and set

permissions on tables, procedures, and views.

https://www.apachefriends.org/index.html

Page 4 of 146

SQL Server consists mainly of a Database Engine and a Management Studio.

SQL Server Management Studio

SQL Server Management Studio is a GUI tool included with SQL Server for configuring, managing,

and administering all components within Microsoft SQL Server.

A central feature of SQL Server Management Studio is the Object Explorer, which allows the user to

browse, select, and act upon any of the objects within the server.

When creating SQL commands and queries, the “Query Editor” (select “New Query” from the

Toolbar) is used (shown in the figure above). With SQL and the “Query Editor” we can do almost

everything with code, but sometimes it is also a good idea to use the different Designer tools in SQL

to help us do the work without coding (so much).

Page 5 of 146

B. Description of Structured Query Language sub-languages (DDL, DML, DCL)

SQL Commands

The standard SQL commands to interact with relational databases are CREATE, SELECT, INSERT,

UPDATE, DELETE and DROP. These commands can be classified into the following sublanguages

based on their nature:

Sublanguage 1: DDL - Data Definition Language

Sublanguage 2: DML - Data Manipulation Language

Sublanguage 3: DCL - Data Control Language

C. Description of Structured Query Language commands per sublanguage

C.1. DDL - Data Definition Language commands

A subset of SQL that is used to CREATE, ALTER, DROP, or otherwise changes definitions of tables,

views and other database objects (RENAME or TRUNCATE).

No Command &description

1 CREATE: Creates a new table, a view of a table, or other object in the database.

2 ALTER: Modifies an existing database object, such as a table.

3 DROP: Deletes an entire table, a view of a table or other objects in the database

4 RENAME: Renames a database or a table by giving another name.

5 TRUNCATE: Is used to delete complete data from an existing table.

C.2. DML - Data Manipulation Language commands

SELECT, INSERT, UPDATE, DELETE

Used to add data to existing tables within a database or to edit or remove existing data from within

a database as well us retrieving records from one or more tables.

No Command &description

1 SELECT: Retrieves certain records from one or more tables.

2 INSERT: Creates a record.

3 UPDATE: Modifies records.

4 DELETE: Deletes records.

Page 6 of 146

C.3. DCL - Data Control Language commands

GRANT, REVOKE

Used by the database administrator to grant or revoke privileges to users of the RDBMS.

• Examples: connect to the database, read data, insert data, modify database objects, export or

import data.

No Command &description

1 GRANT: Gives a privilege to user

2 REVOKE: Takes back privileges granted from user.

Learning Outcome1.2: Create a database

 Content/Topic 1: Description of syntax of Structured Query Language commands

No Command syntax

1 Create a database CREATE database database_name;

2 Rename a database Note: there is no single command to rename a database

3 Drop a database DROP database database_name;

Rename a database using Transact-SQL

To rename a SQL Server database by placing it in single-user mode

Use the following steps to rename a SQL Server database using T-SQL in SQL Server Management

Studio including the steps to place the database in single-user mode and, after the rename, place

the database back in multi-user mode.

1. Connect to the master database for your instance.

2. Open a query window.

3. Copy and paste the following example into the query window and click Execute. This example

changes the name of the OLD_DATABASE_NAME database to NEW_DATABASE_NAME.

USE master;
GO
ALTERDATABASE OLD_DATABASE_NAME SET SINGLE_USER WITHROLLBACKIMMEDIATE
GO
ALTERDATABASE OLD_DATABASE_NAME MODIFYNAME = NEW_DATABASE_NAME;
GO
ALTERDATABASE NEW_DATABASE_NAME SET MULTI_USER
GO

Page 7 of 146

 Content/Topic 2: Execution of create, rename and drop database command

Command Example

CREATE database CREATE database CUSTOMERS;

DROP database DROP database CUSTOMERS;

RENAME

database

USE master;
GO
ALTERDATABASE CUSTOMERS SET
SINGLE_USER
WITHROLLBACKIMMEDIATE
GO
ALTERDATABASE CUSTOMERS
MODIFYNAME = CLIENTS;
GO
ALTERDATABASE CLIENTS SET
MULTI_USER
GO

Using MySQL

Open CMD and type

C:/Xampp/mysql/bin/> :

=>Copy old database

mysqldump -u username -p -v

oldDB>oldDB.sql

=>create a new database

mysqladmin -u username -p create

newDB

=>Paste old database to new database

mysql -u username -p newDB<oldDB.sql

Learning Outcome 1.3: Create tables with attributes

 Content/Topic 1: Explanation of variables

Variables are the object which acts as a placeholder.

 During data retrieval, you may encounter a situation where you need to temporarily store a value

for later use in your query. It may be a value from a SELECT statement or a constant value that will

be used later in a query. In order to use a variable, you must first declare it. Next, you prefix the

variable with an “at” (@) symbol. Finally, you specify the data type that will be stored in the

variable.

Local variable

Local variable is the name of a variable. Variable names must begin with an “at” (@) sign. Local

variable names must comply with the rules for identifiers.

A. Variable declaration

The ability to using variables in SQL is a powerful feature. You need to use the keyword

DECLARE when you want to define the variables. Local variables must have the symbol

“@” as a prefix. You also need to specify a data type for your variable (int, varchar(x), etc.).

Syntax for declaring variables:

Page 8 of 146

declare @local_variable data_type

If you have more than one variable you want to declare:

declare

@myvariable1 data_type,

@myvariable2 data_type,

…

When you want to assign values to the variable, you must use either a SET or a SELECT

statement.

Example:

declare @myvariable int

set @myvariable=4

If you want to see the value for a variable, you can e.g., use the PRINT command like this:

declare @myvariable int

set @myvariable=4

print @myvariable

The following will be shown in SQL Server:

Assigning variables with a value from a SELECT statement is very useful.

Let use the CUSTOMER table as an example:

You can assign a value to the variable from a select statement like this:

declare @mylastname varchar (50)

select @mylastname=LastName from CUSTOMER where CustomerId=2

print @mylastname

Page 9 of 146

You can also use a variable in the WHERE clause LIKE, e.g., this:

declare @find varchar (30)
set @find = 'J%'
select * from CUSTOMER
where LastName LIKE @find

B. Re-declare a variable

declare@myNAMEvarchar (50)
select@myNAME=NAMEfromCLASSwhereCID=2
print@myNAME
GO
declare@myNAMEvarchar (50)
select@myNAME=NAMEfromCLASSwhereCID=2
print@myNAME

As you can see it above, it is a copy which is separated by GO

C. Concatenating variables

Example

DECLARE@Str1ASVARCHAR(100)='Think'

DECLARE@Str2ASVARCHAR(100)='-'

DECLARE@Str3ASVARCHAR(100)='green'

SELECTCONCAT(@Str1,@Str2,@Str3)ASResultString;

D. Global variables

Built-in Global Variables

Global variables are pre-defined system functions. Their names begin with an @@ prefix. The

server maintains the values in these variables. Global variables return various pieces of information

about the current user environment for SQL Server. SQL Server provides a massive number of

global variables. The following lists some important global variables:

Page 10 of 146

@@CONNECTIONS,@@ERROR ,@@IDENTITY ,@@IDLE ,@@CPU_BUSY

,@@LANGUAGE,@@ROWCOUNT ,@@SERVERNAME ,@@TOTAL_ERRORS ,@@VERSION

,@@SERVERNAME.

FUNCTION DESCRIPTION EXAMPLE

1.@@CONNECTIONS

Returns the number of
login attempts since SQL
Server was last started. It
returns an integer value.

Select@@CONNECTIONSas'Number of
Login Attempts'

2. @@ERROR

The error number for the
last T-SQL statement
executed. If this value is
zero than there were no
errors otherwise it
returns the error.

SELECT*From UserDetail
if(@@ERROR<>0)
print'Error Found'
else
print'Error not Found';

3. @@IDLE

Returns the number of
milliseconds SQL Server
has been idle since it was
last started.

select@@IDLEas'idle milliseconds Time';

4. @@CPU_BUSY

Returns the number of
milliseconds the CPU has
spent working since SQL
Server was last started. It
returns an integer value.

select@@CPU_BUSY as 'Busy
milliseconds Time';

5. @@LANGUAGE

Returns the name of the
language that is currently
used by the SQL Server.

SELECT@@LANGUAGEas'Language' ;

6. @@ROWCOUNT

Returns the number of
rows affected by the last
Transact-SQL statement.

SELECT*FROMUserDetail
SELECT@@rowcountas'Count Number of
Rows affected';

7. @@SERVERNAME

Returns the name of the
service under which SQL
Server is running.

Select@@SERVICENAMEas'ServiceName';

8. @@ Total ERRORS

Returns the number of
disk read/write errors
encountered by SQL
Server since it was last
started. It returns an
integer value.

SELECT @@Total_ERRORS as 'number of

disk read-write errors' ;

9. @@VERSION

Returns the current
version of the SQL Server
Software.

SELECT @@VERSION as 'SQL Server
Version' ;

10. @@Servername Retrieves the name of
the database server the
application is linked to.

SELECT @@SERVERNAME as 'Server
Name' ;

E. Delete a variable

Let create the table @CLASS and insert some records

Page 11 of 146

DECLARE@CLASSTABLE(
CLASS_IDINTNOTNULL,
LASTNAMEVARCHAR(40)NOTNULL,
FIRSTNAMEVARCHAR(50));
INSERTINTO@CLASSVALUES(1,'MUVARA','Valens');
INSERTINTO@CLASSVALUES(2,'UWERA','Esperance');
Note that you need to execute the whole batch or you will get an error

Let verify the insertion of records

DECLARE@CLASSTABLE(
CLASS_IDINTNOTNULL,
LASTNAMEVARCHAR(40)NOTNULL,
FIRSTNAMEVARCHAR(50));
INSERTINTO@CLASSVALUES(1,'MUVARA','Valens');
INSERTINTO@CLASSVALUES(2,'UWERA','Esperance');
SELECT*FROM @CLASS;
Note that you need to execute the whole batch or you will get an error

Now ,let delete variable

DECLARE@CLASSTABLE(
CLASS_IDINTNOTNULL,
LASTNAMEVARCHAR(40)NOTNULL,
FIRSTNAMEVARCHAR(50));
INSERTINTO@CLASSVALUES(1,'MUVARA','Valens');
INSERTINTO@CLASSVALUES(2,'UWERA','Esperance');
DELETE FROM @CLASS;

Note that you need to execute the whole batch or you will get an error

 Content/Topic 2: Explanation of data types

SQL - Data Types

SQL Data Type is an attribute that specifies the type of data of any object. Each column, variable

and expression has a related data type in SQL. You can use these data types while creating your

tables. You can choose a data type for a table column based on your requirement.

SQL Server offers six categories of data types for your use which are listed below:

A. Number types:

 Exact Numeric Data Types

This section of the article will talk about the numeric data types. These data types allow both signed
and unsigned integers. I have divided the numeric data types into the following two sections:

 Exact Numeric Data Types
 Approximate Numeric Data Types

Data Type Description / Range Storage

 Description FROM TO

Bit An integer which can either be 0, 1, or NULL. –

Tinyint Allows whole 0 255 1 byte

Page 12 of 146

numbers

Smallint Allows whole
numbers

-32,768 32,767 2 bytes

Int Allows whole
numbers

-2,147,483,648 2,147,483,647 4 bytes

Bigint Allows whole
numbers

-
9,223,372,036,854,775,808

9,223,372,036,854,775,807 8 bytes

numeric(p,s) Allows a
numeric value.

Where ‘p‘ is
precision

value and ‘s‘ is
scale value

-10^38 +1 10^38 -1 5-17
bytes

decimal(p,s) Allows a
decimal value.

Where ‘p‘ is
precision

value and ‘s‘ is
scale value

-10^38 +1 10^38 -1 5-17
bytes

smallmoney Allows data as
currency

-214,748.3648 +214,748.3647 4 bytes

Money Allows data as
currency

-
922,337,203,685,477.5808

922,337,203,685,477.5807 8 bytes

Now, let us look into Approximate Numeric Data Types.

 Approximate Numeric Data Types

Data Type Description / Range Storage

 Description FROM TO

float(n) Allows Floating
precision number data

-1.79E + 308 1.79E + 308 4 or 8
bytes

Real Allows Floating
precision number data

-3.40E + 38 3.40E + 38 4 bytes

Example: A table using numeric data types

CREATETABLEtest(
idDECIMALPRIMARYKEY,
nameVARCHAR(100),-- up to 100 characters
col1DECIMAL(5,2),-- three digits before the decimal and two behind
col2SMALLINT,-- no decimal point
col3INTEGER,-- no decimal point
col4BIGINT,-- no decimal point.
col5FLOAT(2),-- two or more digits after the decimal place
col6REAL,
);

Page 13 of 146

B. List

In computer science, a list or sequence is an abstract data type that represents a countable

number of ordered values, where the same value may occur more than once. An instance of a list is

a computer representation of the mathematical concept of a tuple or finite sequence; the

(potentially) infinite analog of a list is a stream. Lists are a basic example of containers, as they

contain other values. If the same value occurs multiple times, each occurrence is considered a

distinct item.

A singly linked list structure, implementing a list with three integer elements.

The name list is also used for several concrete data structures that can be used to
implement abstract lists, especially linked lists and arrays. In some contexts, such as
in Lisp programming, the term list may refer specifically to a linked list rather than an array. In class-
based programming, lists are usually provided as instances of subclasses of a generic "list" class,
and traversed via separate iterators.

Many programming languages provide support for list data types, and have special syntax and
semantics for lists and list operations. A list can often be constructed by writing the items in
sequence, separated by commas, semicolons, and/or spaces, within a pair of delimiters such
as parentheses '()', brackets '[]', braces '{}', or angle brackets '<>'. Some languages may allow list
types to be indexed or sliced like array types, in which case the data type is more accurately
described as an array.

In type theory and functional programming, abstract lists are usually defined inductively by two
operations: nil that yields the empty list, and cons, which adds an item at the beginning of a list.

C. DATA DICTIONARY

The data dictionary takes the fields of Logical Model of Data (LMD) describes and organizes them

into table. This is the example of data dictionary (it is not standard):

FIELDS DESCRIPTION TYPE SIZE CONSTRAINT

ClientID Client’s Identifier Varchar 5 Not Null

CliSurname Client Surname Varchar 30 Not Null

CliFirstName Client First Name Varchar 40

ComNum Command Number Varchar 10 Not Null

ComDate Command Date Date 10 = Day Date [Date()]

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Order_theory
https://en.wikipedia.org/wiki/Value_(computer_science)
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Stream_(computing)
https://en.wikipedia.org/wiki/Container_(abstract_data_type)
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Abstract_type
https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Lisp_programming_language
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Instance_(computer_science)
https://en.wikipedia.org/wiki/Iterator
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Comma
https://en.wikipedia.org/wiki/Semicolon
https://en.wikipedia.org/wiki/Space_(punctuation)
https://en.wikipedia.org/wiki/Parentheses
https://en.wikipedia.org/wiki/Bracket
https://en.wikipedia.org/wiki/Brace_(punctuation)
https://en.wikipedia.org/wiki/Angle_bracket
https://en.wikipedia.org/wiki/Array_index
https://en.wikipedia.org/wiki/Array_slicing
https://en.wikipedia.org/wiki/Array_data_type
https://en.wikipedia.org/wiki/Type_theory
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Inductive_type
https://en.wikipedia.org/wiki/File:Singly_linked_list.png

Page 14 of 146

BillID Bill’s Identifier Varchar 10 Not Null

CarID Car’s Identifier Varchar 15 Not Null

CarPrice Car Price Number 10 Not Null

How SQL Server Uses the Data Dictionary?

SQL Server uses the database dictionary to verify SQL statements. When you execute a SQL

statement, the DBMS (Database Management System) parses the statement and then determines

whether the tables and fields you are referencing are valid. To do this quickly, it references the data

dictionary.

D. SQL Server Boolean

There is no Boolean data type in SQL Server. However, a common option is to use the BIT data
type.

A BIT data type is used to store bit values from 1 to 64. So, a BIT field can be used for Booleans,
providing 1 for TRUE and 0 for FALSE.

CREATETABLE testbool(
Sometext VARCHAR(10),
is_checked BIT
);

This means you can insert either a 1 (for TRUE) or 0 (for FALSE) into this column. There is no need to
add a check constraint because BIT values only accept 1 or 0.

INSERTINTO testbool(sometext,is_checked)VALUES ('a', 1);
INSERTINTO testbool(sometext,is_checked)VALUES ('b', 0);

When you select these values, they are shown as 1 or 0.

SELECT sometext,is_checked
FROM testbool;

You can convert these values into other values to display in an application if you don’t want to

display 1 or 0.

Page 15 of 146

 E. Tuple

1) In programming languages, such as Lisp, Python, Linda, and others, a tuple (pronounced TUH-

pul) is an ordered set of values. The separator for each value is often a comma (depending on the

rules of the particular language). Common uses for the tuple as a data type are (1) for passing a

string of parameters from one program to another, and (2) representing a set of value attributes in

a relational database. In some languages, tuples can be nested within other tuples within

parentheses or brackets or other delimiters. Tuples can contain a mixture of other data types.

Here's an example of a tuple that emphasizes the different data types that may exist within a tuple

data type:

17,*, 2.49, Seven

The above example is sometimes referred to as a 4-tuple, since it contains four values. An n-tuple

would be one with an indeterminate or unspecified number of values.

 2) A tuple is analogous to a record in non relational databases.

The term originated as an abstraction of the sequence: single, double, triple, quadruple, quintuple,

n-tuple. Tuple is used in abstract mathematics to denote a multidimensional coordinate system.

F. Strings

 Character String Data Types

This section of the article will talk about the character data types. These data types allow characters

of fixed and variable length. Refer to the below table.

Data Type Description / Maximum Size Storage

 Description Maximum Size

Text Allows a variable length
character string

2GB of text data 4 bytes + number
of chars

varchar(max) Allows a variable length
character string

2E + 31 characters 2 bytes + number
of chars

varchar Allows a variable length
character string

8,000 characters 2 bytes + number
of chars

Char Allows a fixed length character
string

8,000 characters Defined width

 Unicode Character Strings Data Types

https://whatis.techtarget.com/definition/Python
https://searchapparchitecture.techtarget.com/definition/data-type?_ga=2.137613104.1085500611.1604631052-972823172.1604631052

Page 16 of 146

Data Type Description / Maximum Size Storage

 Description Maximum Size

Ntext Allows a variable length
Unicode string

2GB of text data 4 bytes + number
of chars

nvarchar(max) Allows a variable length
Unicode string

2E + 31 characters 2 bytes + number
of chars

nvarchar Allows a variable length
Unicode string

4,000 characters 2 bytes + number
of chars

nchar Allows a fixed length Unicode
string

4,000 characters Defined width * 2

 Content/Topic 2: Type of SQL Operators

What is an Operator in SQL? An operator is a reserved word or a character used primarily in an SQL

statement's WHERE clause to perform operation(s), such as comparisons and arithmetic operations.

These operators are used to specify conditions in an SQL statement and to serve as conjunctions for

multiple conditions in a statement.

A. Arithmetic operators

These operators are used to perform operations such as addition, multiplication, subtraction etc.

Operator Operation Description

+ Addition Add values on either side of the operator

– Subtraction Used to subtract the right hand side value from the left hand side
value

* Multiplication Multiples the values present on each side of the operator

/ Division Divides the left hand side value by the right hand side value

% Modulus Divides the left hand side value by the right hand side value; and
returns the remainder

EXAMPLE:

Let use our CUSTOMER TABLE to perform the operations

SELECT* FROM CUSTOMER;

SELECT 32+25 ASADDITION;

Page 17 of 146

SELECT 32-25 ASSUBTRACTION;
SELECT 32*2 ASMULTIPLICATION;
SELECT 24/12 ASDIVISION;
SELECT 32%3 ASMODULUS;
Well, that was about the arithmetic operators available in SQL. Next in this article on SQL operators, let us

understand the comparison operators available.

B. Comparison operators

These operators are used to perform operations such as equal to, greater than, less than etc.

Operator Operation Description

= Equal to Used to check if the values of both operands are equal or not. If
they are equal, then it returns TRUE.

> Greater than Returns TRUE if the value of left operand is greater than the right
operand.

< Less than Checks whether the value of left operand is less than the right
operand, if yes returns TRUE.

>= Greater than or
equal to

Used to check if the left operand is greater than or equal to the
right operand, and returns TRUE, if the condition is true.

<= Less than or
equal to

Returns TRUE if the left operand is less than or equal to the right
operand.

<> or! = Not equal to Used to check if values of operands are equal or not. If they are not
equal then, it returns TRUE.

!> Not greater than Checks whether the left operand is not greater than the right
operand, if yes then returns TRUE.

!< Not less than Returns TRUE, if the left operand is not less than the right operand.

Example: For your better understanding, I will consider the following table CUSTOMER to perform

various operations.

Example [Use equal to]:

SELECT*FROMCUSTOMER
WHERECSALARY=2000;
OUTPUT:

Well, this is an example on comparison operators. Moving on in this article on SQL operators, let us

understand the various logical operators available.

Page 18 of 146

C. Assignment Operator

The assignment operator (=) in SQL Server is used to assign the values to a variable. The equal sign
(=) is the only Transact-SQL assignment operator. In the following example, we
create @MyCounter variable and then the assignment operator sets @MyCounter variable to a
value i.e. 1.
DECLARE @MyCounter INT;
SET @MyCounter = 1;
The assignment operator can also be used to establish the relationship between a column heading
and the expression that defines the values for that column. The following example displays the
column headings as FirstColumn and SecondColumn. The string ‘abcd‘is displayed for all the rows in
the FirstColumn column heading. Then, each Employee ID from the Employee table is listed in the
SecondColumn column heading.
SELECT FirstColumn = ‘abcd’, SecondColumn = ID FROM Employee;

Compound Assignment Operators in SQL Server:

SQL SERVER 2008 has introduced a new concept of Compound Assignment Operators.
The Compound Assignment Operators are available in many other programming languages for
quite some time. Compound Assignment Operators are operated where variables are operated
upon and assigned in the same line. Compound-assignment operators provide a shorter syntax for
assigning the result of an arithmetic or bitwise operator. They perform the operation on the two
operands before assigning the result to the first operand.

The following example is without using Compound Assignment Operators.

DECLARE @MyVariable INT

SET @MyVariable = 10

SET @MyVariable = @MyVariable * 5

SELECT @MyVariable AS MyResult

GO

The above example can be rewritten using Compound Assignment Operators as follows.

DECLARE @MyVariable INT

SET @MyVariable = 10

SET @MyVariable *= 5

SELECT @MyVariable AS MyResult

GO

Following are the list of available compound operators in SQL Server

+= Adds some amount to the original value and sets the original value to the result.
-= Subtracts some amount from the original value and sets the original value to the result.
*= Multiplies by an amount and sets the original value to the result.
/= Divides by an amount and sets the original value to the result.
%= Divides by an amount and sets the original value to the modulo.

Page 19 of 146

D. Logical Operators

The logical operators are used to perform operations such as ALL, ANY, NOT, BETWEEN etc.Logical

operators separate two or more conditions in the WHERE clause of an SQL statement.

Here is a list of all the logical operators available in SQL.

Operator Description

ALL Used to compare a specific value to all other values in a set

ANY Compares a specific value to any of the values present in a set.

IN Used to compare a specific value to the literal values mentioned.

BETWEEN Searches for values within the range mentioned.

AND Allows the user to mention multiple conditions in a WHERE clause.

OR Combines multiple conditions in a WHERE clause.

NOT A negate operators, used to reverse the output of the logical operator.

EXISTS Used to search for the row’s presence in the table.

LIKE Compares a pattern using wildcard operators.

SOME Similar to the ANY operator, and is used compares a specific value to some of the
values present in a set.

UNIQUE Searches every row of a specified table for uniqueness(no duplicate)

Example:

I am going to consider the CUSTOMER table considered above, to perform a few of the operations.

Example [ANY]

SELECT*FROMCUSTOMER
WHERECAGE>ANY (SELECTCAGEFROMCUSTOMERWHERECAGE> 22);

In this article, I have explained only one example. I would say, go forward and practice a few more

examples on the different types of operators to get good practice on writing SQL queries.

E. Membership operators

Set-membership tests: IN, NOT IN

SQL IN Clause (SEEN ABOVE)

SELECT column1, column2....columnN
FROM table_name
WHERE column_name IN (val-1, val-2,...val-N);
SQL NOT IN Clause

Page 20 of 146

SELECT column1, column2....columnN
FROM table_name
WHERE column_name NOT IN (val-1, val-2,...val-N);
EXAMPLE: / try it by yourself to see the result

SELECT*FROMCUSTOMER
WHERECAGENOTIN ('32','22');

F. Identity

 We can assign this identity property to a column during the table definition itself or during the
addition of a column as well. It is given using the IDENTITY keyword, along with a start value and an
increment value. For example 1, 1 indicates that the identity generated would be from 1 onward
with an increment of 1 for every row like: 1,2,3,4... Etc.

What is Identity in SQL Server?

The Identity in SQL Server is a property that can be applied to a column of a table whose value is
automatically created by the server. So, whenever you marked a column as identity, then that
column will be filled in an auto-increment way by SQL Server. That means as a user we cannot
insert a value manually into an identity column.
Syntax IDENTITY [(seed, increment)]
Arguments:

1. Seed: Starting value of a column. The default value is 1.
2. Increment: It specifies the incremental value that is added to the identity column value of

the previous row. The default value is 1.
We can set the identity property to a column either when the table is created or after table
creation. The following shows an Identity property when the table is created:

Create Table Person

(

PersonId int identity (1, 1),

Name nvarchar (20)

)

The following example shows an Identity column after the table has been created:

CREATE TABLE Person

(

PersonId int,

Name nvarchar (20)

)

GO

Page 21 of 146

ALTER TABLE Person

DROP COLUMN PersonId;

GO

ALTER TABLE Person

ADD PersonId INT IDENTITY (1, 1);

GO

It is also possible to set the identity property of a column after the table is created. In such cases,
first, we need to drop that column and then create that column using the identity property.
If a column is marked as an identity column, then the values for this column are automatically
generated, when we insert a new row into the table.
The above create table statement marks PersonId as an identity column with seed = 1 and Identity
Increment = 1. Seed and Increment values are optional. If we don’t specify the identity increment
and seed, then by default both are to 1.
Example:

Consider the following 2 insert statements; here we only pass the values for Name column. We are
not passing the value for PersonId column.
Insert into Person values (‘Bob’)
Insert into Person values (‘James’)
But, If we select all the rows from the Person table, then we will see that, ‘Bob’ and ‘James’ rows
have got 1 and 2 as PersonId.
select * from Person

Now, if I try to execute the following query,
Insert into Person values (1,’Mark’)
It will give us the following error

So if we mark a column as an Identity column, then we don’t need to supply a value for that column
explicitly. The value for the identity column is automatically calculated and provided by SQL Server.
So, to insert a row into the Person table, just provide value for Name column as shown below.
Insert into Person values (‘Mark’)
Now fetch the record from the Person table
Select * from Person It will give the following result set.

Delete the row, that we have just inserted i.e. the row with PersonId = 3 and insert another row as
shown below.

Page 22 of 146

Delete from Person where PersonId = 3
Insert into Person values (‘Smith’)
Now fetch the record from the Person table as Select * from Person which will give the following
result set.

You can see that the value for PersonId is 4. A record with PersonId = 3, does not exist, and you
want to fill this gap. To do this, you should be able to explicitly supply the value for the identity
column.

G. Operator precedence

Precedence represents the order in which operators from the same expression are being evaluated.

When several operators are used together, the operators with higher precedence are evaluated

before those with the lower precedence. In general, the operators’ precedence follows the same

rules as in the high school math. The order of the precedence is indicated in the following table.

Operator Precedence

Unary operators, bitwise NOT (MS SQL Server only) 1

Multiplication and division 2

Addition, subtraction, and concatenation 3

SQL conditions 4

Operator Precedence

 Multiplication and division take priority over addition and subtraction.

 Operators of the same priority are evaluated from left to right.

 Parentheses are used to force prioritized evaluation and to clarify statements.

Example

SELECT ename, sal, 12 * sal + 100

FROM emp;

Page 23 of 146

The example on the slide displays the name, salary, and annual compensation of employees. It

calculates the annual compensation as 12 multiplied by the monthly salary, plus a one-time bonus

of $ 100. Notice that multiplication is performed before addition.

Note: Use parentheses to reinforce the standard order of precedence and to improve clarity. For

example, the expression above can be written as (12*sal) +100 with no change in the result.

Learning Outcome 1.4: Use SQL constraints

 Content/Topic 1: Description of Structured Query Language constraints

Constraints are the rules enforced on data columns on a table. These are used to limit the type of

data that can go into a table. This ensures the accuracy and reliability of the data in the database.

Constraints can either be column level or table level. Column level constraints are applied only to

one column whereas table level constraints are applied to the entire table.

NO Constraint Description

1 Primary key

constraint

constraint uniquely identifies each record in a table

Primary keys must contain UNIQUE values, and cannot contain

NULL values.

A table can have only ONE primary key; and in the table, this

primary key can consist of single or multiple columns (fields).

2 Foreign key

constraint

Uniquely identifies a row/record in any another database

table

3 Unique key

constraint

Ensures that all the values in a column are different.

4 Not null constraint Ensures that a column cannot have a NULL value.

5 Default constraint Provides a default value for a column when none is

specified.

6 Check constraint The CHECK constraint ensures that all values in a column

satisfy certain conditions.

SQL - ALTER TABLE Command

Page 24 of 146

The SQL ALTER TABLE command is used to add, delete or modify columns in an existing table. You

should also use the ALTER TABLE command to add and drop various constraints on an existing

table.

Below is table of some syntax for SQL ALTER TABLE:

 ADD DROP

Primary key

constraint

ALTER TABLE table_name

ADD CONSTRAINT

MyPrimaryKey PRIMARY KEY

(column1, column2...);

ALTER TABLE table_name

DROP CONSTRAINT MyPrimaryKey;

Or in MySQL

ALTER TABLE table_name

DROP PRIMARY KEY;

Unique key

constraint

ALTER TABLE table_name

ADD CONSTRAINT

MyUniqueConstraint

UNIQUE(column1,

column2...);

ALTERTABLEtablename

DROPCONSTRAINT UC_tablename;

Not null constraint ALTER TABLE table_name

MODIFY column_name

datatype NOT NULL;

Check constraint ALTER TABLE table_name

ADD CONSTRAINT

MyUniqueConstraint CHECK

(CONDITION);

ALTERTABLEtable_name

DROPCONSTRAINT

CHK_Columnname;

 column ALTER TABLE table_name

ADD column_name datatype;

ALTER TABLE table_name DROP

COLUMN column_name;

Data type ALTER TABLE table_name

MODIFY COLUMN

column_name datatype;

NOT APPLICABLE

 Content/Topic2: Execution of Structured Query Language constraints

A. Add/drop primary key constraint

A.1. SQL PRIMARY KEY on create table

Page 25 of 146

PRIMARY KEY CONSTRAINT

SQL SERVER

MySQL

SQL SERVER and

My SQL

PRIMARY KEY constraint on single column:

PRIMARY KEY constraint on multiple

columns

CREATETABLE Persons
(
 ID int
NOTNULLPRIMARYKEY,
 LastName varchar
(255) NOTNULL,
 FirstName varchar
(255),
 Age int
);

CREATETABLE Persons
(
 ID int NOTNULL,
 LastName varchar
(255) NOTNULL,
 FirstName varchar
(255),
 Age int,
 PRIMARYKEY (ID)
);

CREATETABLE Persons (
 ID int NOTNULL,
 LastName varchar (255) NOTNULL,
 FirstName varchar (255),
 Age int,
 CONSTRAINT PK_Person PRIMARYKEY
(ID, LastName)
);

A.2.SQL PRIMARY KEY on ALTER TABLE

ADD

SQL SERVER and MySQL

On single column

SQL SERVER and My SQL on multiple

columns

ALTERTABLE Persons
ADDPRIMARYKEY (ID);

ALTERTABLE Persons
ADDCONSTRAINT PK_Person PRIMARYKEY (ID,
LastName);

Note: If you use the ALTER TABLE statement to add a primary key, the primary key column(s) must

already have been declared to not contain NULL values (when the table was first created).

A.3.DROP a PRIMARY KEY Constraint

DROP

MySQL SQL Server

ALTERTABLE Persons
DROPPRIMARYKEY;

ALTERTABLE Persons
DROPCONSTRAINT PK_Person;

B. Add/drop foreign key constraint

SQL FOREIGN KEY Constraint

Look at the following two tables:

“Persons table” “Orders table”

Page 26 of 146

Notice that the "PersonID" column in the "Orders" table points to the "PersonID" column in the

"Persons" table.

B.1.SQL FOREIGN KEY on CREATE TABLE

FOREIGN KEY CONSTRAINT

SQL SERVER and MySQL SQL SERVER and My SQL

FOREIGN KEYconstraint on single column: FOREIGN KEYconstraint on multiple columns

CREATETABLE Orders (
 OrderID int NOTNULLPRIMARYKEY,
 OrderNumber int NOTNULL,
 PersonID int FOREIGNKEYREFERENCES
Persons (PersonID));

CREATETABLE Orders (
 OrderID int NOTNULL,
 OrderNumber int NOTNULL,
 PersonID int,
 PRIMARYKEY (OrderID),
 CONSTRAINT FK_PersonOrder FOREIGNKEY
(PersonID)
 REFERENCES Persons(PersonID));

B.2. SQL FOREIGN KEY on ALTER TABLE

ADD

SQL SERVER and MySQL

On single column

SQL SERVER and My SQL on multiple columns

ALTERTABLE Orders
ADDFOREIGNKEY (PersonID) REFERENCES
Persons (PersonID);

ALTERTABLE Orders
ADDCONSTRAINT FK_PersonOrder
FOREIGNKEY (PersonID) REFERENCES
Persons(PersonID);

B.3.DROP a FOREIGN KEY Constraint

MySQL SQL Server

ALTERTABLE Orders
DROPFOREIGNKEY FK_PersonOrder;

ALTERTABLE Orders
DROPCONSTRAINT FK_PersonOrder;

C. Add/drop unique key constraint

C.1. SQL UNIQUE Constraint on CREATE TABLE

OrderID OrderNumber PersonID

1 77895 3

2 44678 3

3 22456 2

4 24562 1

PersonID LastName FirstNa
me

Age

1 Hansen Ola 30

2 Svendson Tove 23

3 Pettersen Kari 20

Page 27 of 146

UNIQUE CONSTRAINT

SQL SERVER

MySQL

SQL SERVER andMy SQL

UNIQUE KEY constraint on single column: UNIQUE KEY constraint on multiple columns

CREATETABLE
Persons (
 ID int
NOTNULLUNIQUE,
 LastName
varchar(255)
NOTNULL,
 FirstName
varchar(255),
 Age int
);

CREATETABLE Persons (
 ID int NOTNULL,
 LastName varchar(255)
NOTNULL,
 FirstName
varchar(255),
 Age int,
 UNIQUE (ID)
);

CREATETABLE Persons (
 ID int NOTNULL,
 LastName varchar (255) NOTNULL,
 FirstName varchar (255),
 Age int,
 CONSTRAINT UC_Person UNIQUE (ID,
LastName)
);

C.2. SQL UNIQUE Constraint on ALTER TABLE

ADD

SQL SERVER and MySQL

On single column

SQL SERVER and My SQL on multiple columns

ALTERTABLE Persons
ADDUNIQUE (ID);

ALTERTABLE Persons
ADDCONSTRAINT UC_Person UNIQUE (ID,
LastName);

DROP
 MySQL SQL SERVER
ALTERTABLE Persons
DROPINDEX UC_Person;

ALTERTABLE Persons
DROPCONSTRAINT UC_Person;

D. Add /drop not null constraint

D.1. SQL NOT NULL on CREATE TABLE

SQL NOT NULL CONSTRAINT

SQL SERVER and MySQL

CREATETABLE Persons (ID int NOTNULL,
 LastName varchar (255) NOTNULL,
 FirstName varchar (255) NOTNULL,
 Age int
);

D.2.SQL NOT NULL on ALTER TABLE

To create a NOT NULL constraint on the "Age" column when the "Persons" table is already created,

use the following SQL:

Page 28 of 146

ALTERTABLE Persons

MODIFY Age int NOTNULL;

E. Add/drop default constraint

E.1.SQL DEFAULT on CREATE TABLE

DEFAULT CONSTRAINT

SQL SERVER

MySQL

SQL SERVER and

My SQL

DEFAULTconstraint on City column:

DEFAULTconstraint to insert system values by
using like GETDATE

CREATETABLE Persons (
 ID int NOTNULL,
 LastName varchar (255) NOTNULL,
 FirstName varchar (255),
 Age int,
 City varchar (255) DEFAULT'Sandnes'
);

CREATETABLE Orders (
 ID int NOTNULL,
 OrderNumber int NOTNULL,
 OrderDate date DEFAULT GETDATE ()
);

E.2.SQL DEFAULT on ALTER TABLE

ADD

SQL SERVER and MySQL SQL SERVER and My SQL

ALTERTABLE Persons
ALTER City SETDEFAULT'Sandnes';

ALTERTABLE Persons
ADDCONSTRAINT df_City
DEFAULT'Sandnes' FOR City;

DROP
 MySQL SQL SERVER
ALTERTABLE Persons
ALTER City DROPDEFAULT;

ALTERTABLE Persons
ALTERCOLUMN City DROPDEFAULT;

F. Add/drop check constraint

F.1.SQL CHECK on CREATE TABLE

Page 29 of 146

CHECK CONSTRAINT

SQL SERVER and MySQL SQL SERVER andMy SQL

CHECK constraint on single column: CHECK constraint on multiple columns

CREATETABLE Persons (
 ID int NOTNULL,
 LastName varchar (255) NOTNULL,
 FirstName varchar (255),
 Age int CHECK (Age>=18)
);

CREATETABLE Persons (
 ID int NOTNULL,
 LastName varchar (255) NOTNULL,
 FirstName varchar (255),
 Age int,
 City varchar (255),
 CONSTRAINT CHK_Person CHECK (Age>=18 AND
City='Sandnes')
);

F.2.SQL CHECK on ALTER TABLE

ADD

SQL SERVER and MySQL

On single column

SQL SERVER and My SQL on multiple columns

ALTERTABLE Persons
ADDCHECK (Age>=18);

ALTERTABLE Persons
ADDCONSTRAINT CHK_PersonAge CHECK
(Age>=18 AND City='Sandnes');

DROP

 MySQL SQL SERVER

ALTERTABLE Persons
DROPCHECK CHK_PersonAge;

ALTERTABLE Persons
DROPCONSTRAINT CHK_PersonAge;

Page 30 of 146

Learning Outcome 1.5: Refine database design

Database design can also be called schema and Refining database design is called schema

refinement Refining database design is just a fancy term for saying polishing tables. It is the last

step before considering physical design/tuning with typical workloads:

1) Requirement analysis: user needs

2) Conceptual design: high-level description, often using E/R diagrams

3) Logical design: from graphs to tables (relational schema)

4) Schema refinement: checking tables for redundancies and anomalies

 Content/Topic 1: Evaluation of the database design

Evaluation considerations

Before Schema refinement, you need to evaluate the design for performance. To satisfy

performance requirements for each individual business transaction for example, you need to

consider the following issues:

 A. Input/output performance

Checks if the number of I/O operations performed against the database sufficiently low to provide

satisfactory transaction performance.

B. CPU time

Check if the structure of the physical database optimizes the use of CPU processing.

C. Space management

Check if design choices help to conserve storage resources

 Content/Topic2: Refinement option

The following database options can be used to ensure optimal performance in individual business

transactions:

A. Indexes

"Determining How an Entity Should Be Stored" you include indexes in the database design to

provide data clustering. At this point in the design process, you have the option to include

additional indexes to provide generic search capabilities as well as alternate access keys.

B. Collapsing relationships

The solution is to collapse the two tables into one. The data from the two tables must be in a one-

to-one relationship to collapse tables. Collapsing the tables eliminates the join, but loses the

conceptual separation of the data.

Page 31 of 146

Example: Having these two tables: PERSONAL and PAYROLL

PERSONAL

PAYROLL

Now, let collapse them

You can see that the PAYROLL table is no longer there; its attribute PayRate has become the

attribute of PERSONAL.

A one-to-many relationship can be expressed within a single entity by making the manyportion of

the relationship a repeating data element. A one-to-many relationship expressedin this way can

enhance processing performance by reducing DBMS overhead associatedwith processing multiple

entity occurrences.

C. Introducing redundancy

The problem of redundancy in Database

Redundancy means having multiple copies of same data in the database. This problem arises when

a database is not normalized. Suppose a table of student details attributes are: student Id, student

name, college name, college rank, course opted.

Page 32 of 146

As it can be observed that values of attribute college name, college rank, course is being repeated

which can lead to problems. Problems caused due to redundancy are: Insertion anomaly, Deletion

anomaly, and Updation anomaly.

C.1.Insertion Anomaly

If a student detail has to be inserted whose course is not being decided yet then insertion will not

be possible till the time course is decided for student.

This problem happens when the insertion of a data record is not possible without adding some

additional unrelated data to the record.

C.2. Deletion Anomaly

If the details of students in this table is deleted then the details of college will also get deleted

which should not occur by common sense.This anomaly happens when deletion of a data record

results in losing some unrelated information that was stored as part of the record that was deleted

from a table.

C.3.Updation Anomaly

Suppose if the rank of the college changes then changes will have to be all over the database which

will be time-consuming and computationally costly.

If updation does not occur at all places, then database will be in inconsistent state. Although data

redundancy should normally be avoided, you can sometimes enhance processing efficiency in

selected applications by storing redundant information. A certain amount of planned data

redundancy can be used to simplify processing logic.

Page 33 of 146

In some instances, you can eliminate an entity type from the database design by maintaining some

redundant information. For example, you might be able to eliminate an entity type by maintaining

the information associated with this entity in another entity type in the database. When you merge

two or more entity types in this way, you simplify the physical data structures and reduce

relationship overhead.

Considerations

Consider maintaining redundant data under the following circumstances:

An entity type is never processed independently of other entity types.

If an entity is always processed with one or more additional entity types, you may be able to

eliminate the entity and store the information elsewhere in the database. Since the

information associated with the entity is not meaningful by itself, inconsistent copies of the

data should not present a problem for the business.

An entity type is not used as an entry point to the database.

If an application programs do not use a particular entity type as an entry point to the

database, you may be able to eliminate the entity type from the design. However, do not

eliminate the entity if it is a junction entity type in a many-to-many relationship.

The volume of data to be stored redundantly is minimal.

Do not maintain large amounts of data redundantly. A high volume of redundant

information will require excessive storage space.

 Content/Topic 3: Estimating Input/Outputs for Transactions

After you have assigned data location and access modes to the entities in a database, you need to

estimate the number of input/output operations that each business transaction will perform. You

estimate the I/O count for a transaction by tracing the flow of processing from one entity to

another in the database. As you trace the flow of processing, you determine the number of I/Os

required accessing all necessary entities.

The I/O estimate for a business transaction depends on several factors, including:

 The order in which entities are accessed

 The location mode of each entity accessed

Page 34 of 146

 The types of indexes (if any) used to access the data

 How the entities are clustered in the database?

General guidelines:

Assuming that an entire cluster of database entities can fit on a single database page, you can use

the following general guidelines for estimating I/Os:

Zero I/Os are required to access an entity that is clustered around a previously accessed

entity.

One I/O is required to access an entity stored CALC.

Three I/Os are required to access an entity through an index.

Eliminating unnecessary entities (refer to Collapsing relationships seen previously)

 Content/Topic4: Eliminating unnecessary relationships

One-To-One Relationship

A one-to-one (1:1) relationship means that each record in Table A relates to one, and only one,

record in Table B, and each record in Table B relates to one, and only one, record in Table A. Look at

the following example of tables from a company's Employees database:

PERSONAL

PAYROLL

Above, tables with a one-to-one relationship from a database of information about employees.

Each record in the Personal table is about one employee. That record relates to one, and only one,

record in the Payroll table. Each record in the Payroll table relates to one, and only one, record in

Page 35 of 146

the Personal table. In a one-to-one relationship, either table can be considered to be the primary or

parent table.

Instead of having the two tables you can make PayRate attribute of PERSONAL in order to eliminate

the relationship between them.

Table: PERSONAL

 Content/Topic5: Adding indexes

NOTE: This topic has been explained clearly and practically in another section (Learning

Outcome 2.10, Topic 3: Description of SQL index and Topic4: Index execution)

In determining how an entity should be stored, you included indexes in the physical

database model for entities that will be accessed through multi-occurrence retrievals. These

entity occurrences will be clustered around the index. You now have the option to define

additional indexes for database entities to satisfy processing requirements.

Why add additional indexes?

Indexes provide a quick and efficient method for performing several types of processing.

A. Direct retrieval by key

With an index, the DBMS can retrieve individual entity occurrences directly by means

of a key. For example, an application programmer could use an index to quickly access

an employee by social security number.

Because more than one index can be defined on an entity (each on a different data

element), they can be used to implement multiple access keys to an entity

B. Generic access by key

Indexes allow the DBMS to retrieve a group of entity occurrences by specifying a

complete or partial (generic) key value. For example, an index could be used to quickly

access all employees whose last names begin with the letter M. A string of characters, up

to the length of the symbolic key, can be used as a generic key.

Page 36 of 146

C. Ordered retrieval of occurrences

The DBMS can use a sorted index to retrieve entity occurrences in sorted order. In this

case, the keys in the index are automatically maintained in sorted order; the entity

occurrences can then be retrieved in ascending or descending sequence by key value. The

application program does not have to sort the entity occurrences after retrieval.

D. Retrieval of a small number of entity occurrences

An index improves retrieval of all occurrences of a sparsely-populated entity and

provides a way of locating all occurrences of such entities without reading every page in

the area (an area sweep). Area sweeps are the most efficient means of retrieving entities

with occurrences on all (or almost all) pages in an area.

E. Physical sequential processing by key

Entity occurrences can be stored clustered around an index. With this storage mode,

the physical location of the clustered entity occurrences reflects the ascending or

descending order of their db-keys or symbolic keys. If occurrences of an entity are to be

retrieved in sequential order, storing entity occurrences clustered via the index reduces

I/O. This option is most effective when used with a stable database.

F. Enforcement of unique constraints

An index can be used to ensure that entity occurrences have unique values for data

elements; for example, to ensure that employees are not assigned duplicate social security

numbers.

Page 37 of 146

Learning Unit 2-Apply DML queries

Learning Outcome 2.1: Execute database insert operation

 Topic 1: Description of Syntax of SQL statement of INSERT INTO statement with one row

The INSERT INTO statement is used to insert a new row in a table.

It is possible to write the INSERT INTO statement in two forms.

The first form doesn't specify the column names where the data will be inserted, only their

values:

We are going to use CUSTOMER table as an example

INSERT INTO table_name
VALUES (value1,value2,value3,...)
--Example:
INSERT INTO CUSTOMER
VALUES ('1000','Smith','John', 12,'California','11111111');
--The second form specifies both the column names and the values to be inserted:
INSERT INTO table_name(column1,column2,column3,...)
VALUES (value1,value2,value3,...)
This form is recommended!

Example:
INSERT INTO CUSTOMER(CustomerNumber,LastName,FirstName)
VALUES ('1000','Smith','John');

A. INSERT INTO statement with one row

Example:

INSERTINTO CUSTOMER(CustomerNumber,LastName,FirstName,AreaCode,Address,Phone)VALUES
('1000','Smith','John', 12,'California','11111111');

A.1. Insert data in all columns

Example:

INSERT INTO CUSTOMER(CustomerNumber,LastName,FirstName,AreaCode,

Address,Phone)

VALUES ('1000','Smith','John', 12,'California','11111111');

A.2. Insert Data Only in Specified Columns:

It is also possible to only add data in specific columns.
Example:

Page 38 of 146

INSERTINTO CUSTOMER(CustomerNumber,LastName,FirstName)
VALUES ('1000','Smith','John');
Note! You need at least to include all columns that cannot be NULL.

We remember the table definition for the CUSTOMER table:

CREATETABLECUSTOMER
(
CustomerId int IDENTITY (1,1)PRIMARYKEY,
CustomerNumber int NOTNULLUNIQUE,
LastName varchar(50)NOTNULL,
FirstName varchar(50)NOTNULL,
AreaCode int NULL,
Address varchar(50)NULL,
Phone varchar(50)NULL,
);

B. Insert INTO with multiple rows

CREATETABLE CUSTOMER(
CIDINTIDENTITY (1, 1)PRIMARY KEY NOTNULL,
CLAST_NAME VARCHAR (50),
CFIRST_NAME VARCHAR (40),
CAGE int,
CADDRESS VARCHAR(30),
CSALARY money);

The following will insert many records in the table CUSTOMER
INSERT INTO CUSTOMER(CLAST_NAME, CFIRST_NAME, CAGE, CADDRESS, CSALARY) values ('KAZE','
OLGA', 32,'KIGALI', 2000),
('ISHIMWE',' NAOME', 25,'KAMONYI', 1500), ('ISHIMWE',' SAMUEL', 23,'MUHANGA', 2000),
('GATETE',' YOUSSOUF', 25,'RUHANGO', 6500),
(' NISHIMWE',' ALICE', 27,'NYANZA', 4500), ('TUYIZERE',' JOSIANE', 22,'HUYE', 4500),('UWIRAGIYE','
MONIQUE', 24,'NYAMAGABE', 10000);

C. INSERT INTO SELECT Statement

The INSERT INTO SELECT statement copies data from one table and inserts it into another

table.

Note:

-INSERT INTO SELECT requires that data types in source and target tables match.

-The existing records in the source table are unaffected

Copy all columns from one table to another table.

Syntax:

INSERT INTO table2 SELECT*FROM table1 WHERE condition;

Page 39 of 146

Copy only some columns from one table into another table:

Syntax:

INSERT INTO table2(column1,column2,column3,......)SELECT column1,column2,column3,

...FROM table1 WHERE condition;

Example1,

The following SQL statement copies "SUPPLIERS" into "CUSTOMERS" (fill all columns):

INSERT INTO CUSTOMERS(CustomerName,ContactName,Address,City,PostalCode,Country)
SELECT SupplierName,ContactName,Address,City,PostalCode,CountryFROMSUPPLIERS;
Example2,
The following SQL statement copies only the German suppliers into "CUSTOMERS":
INSERT INTO Customers(CustomerName,City,Country)
SELECT SupplierName,City,CountryFROM SUPPLIERS WHERE Country='Germany';

 Content/Topic 2: Execution of INSERT INTO SELECT statement

Use your SQL editor to practice what we have seen above.

Learning Outcome 2.2: Retrieve row and column data from tables using SELECT

statement

 Content/Topic 1: Execution of SQL Simple SELECT statement

A. Introducing SQL Select statement

Capabilities of SQL SELECT Statements

A SELECT statement retrieves information from the database. Using a SELECT statement, you can do

the following:

Selection: You can use the selection capability in SQL to choose the rows in a table that you want

returned by a query. You can use various criteria to selectively restrict the rows that you see.

Projection: You can use the projection capability in SQL to choose the columns in a table that you

want returned by your query. You can choose as few or as many columns of the table as you

require.

Join: You can use the join capability in SQL to bring together data that is stored in different tables

by creating a link through a column that both the tables share. You will learn more about joins in a

later lesson.

B. The description of SELECT Statement table command

Basic SELECT Statement within a table

Page 40 of 146

Syntax:

SELECT [DISTINCT] {*, column [alias],..,}

FROM table;

•SELECT identifies what columns.

•FROM identifies which table.

In its simplest form, a SELECT statement must include the following as there are above in the

syntax.

SELECT Clause, which specifies one or more columns to be displayed.

FROM table
Clause, which specifies the table containing the columns

listed in the SELECT clause.

DISTINCT Suppresses duplicates.

* Selects all columns

column Selects the named column.

alias Gives selected columns different headings.

Example of using SQL SELECT Statements

• Place a semicolon (;) at the end of the last clause.

Selecting All Columns from ‘’emp’’ table use the following

SELECT *

FROM emp;

Selecting All Columns, All Rows

The department table contains three columns: DEPTNO, DNAME and LOC. The table contains four

rows, one for each department.

You can also display allcolumns in the table by listing all the columns after the SELECT keyword. For

example, the following SQL statement, like the example on the slide, displays all columns and all

rows of the DEPT table:

SELECT deptno, dname, loc

FROM dept;

Page 41 of 146

C. ALIAS

SYNTAX:

SELECT COLUMN1[AS]alias_name1,SELECTCOLUMN2[AS]alias_name2………………FROMtable_name;

C.1.Column alias

Defining a Column Alias

 Example:

SELECT ename AS AD, sal AS MAAŞ

FROM emp;

The second example displays the name and annual salary of all the employees. Because Annual

Salary contains spaces, it has been enclosed in double quotation marks.

SELECT ename AS "Ad" , sal "Maaş "

FROM emp;

SELECT ename "Adı", sal * 12 "Yıllık Ücret"

FROM emp;

Page 42 of 146

C.2. Table alias is similar to column alias

D. DISTINCT

Duplicate Rows

Default display of queries is all rows, including duplicate rows.

The example on the slide displays all the department numbers from the EMP table. Notice that the

department numbers are repeated.

Eliminating duplicate rows

Eliminate duplicate rows by using the DISTINCT keyword in the SELECT clause,

To eliminate duplicate rows in the result, include the DISTINCT keyword in the SELECT clause

immediately after the SELECT keyword. In the example on the slide, the EMP table actually contains

fourteen rows but there are only three unique department numbers in the table.

You can specify multiple columns after the DISTINCT qualifier. The DISTINCT qualifier affects all the

selected columns, and the result represents a distinct combination of the columns.

Page 43 of 146

Note! SQL is not case sensitive. SELECT is the same as select.

The full syntax of the SELECT statement is complex, but the main clauses can be summarized

as:

E. SQL TOP PERCENT clause

The SQL TOP clause is used to fetch a TOP N number or X percent recordsfrom a table.

Note - All the databases do not support the TOP clause. For example,MySQL supports the LIMIT

clause to fetch limited number of records.

Syntax

The basic syntax of the TOP clause with a SELECT statement would be as

follows.

Example

Consider the CUSTOMER table having the following records

The following query is an example on the SQL server, which would fetch the top 3 records from the

CUSTOMER table.

SELECTTOP 3 *FROMCUSTOMER;

Page 44 of 146

F. SQL LIMIT clause

If you are using MySQL server, then here is an equivalent example

SELECT * FROMCUSTOMER
LIMIT 3;

Learning Outcome 2.3: Create reports of sorted and restricted data

 Topic1: Limiting the Rows Retrieved by a Query

A. WHERE clause

The WHERE clause is used to extract only those records that fulfil a specified criterion. In other

words, the WHERE clause is used to filter records.

SQL WHERE Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name operator value

WHERE Clause Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select only the persons living in the city "Sandnes" from the table above.

We use the following SELECT statement:

SELECT*FROM Persons;
WHERE City='Sandnes';

B. Comparison operators

Can use standards comparison operations (<,>,<=,>=,=,<>),

B.1 Equal (=)

Previously you saw how some implementations of SQL use the equal sign in the SELECT clause. In

the WHERE clause, the equal sign is the most commonly used comparison operator. Used alone, the

equal sign is a very convenient way of selecting one value out of many.

B.2 Greater Than (>) and Greater Than or Equal To (>=)

B.3 Less Than (<) and Less Than or Equal To (<=)

Page 45 of 146

As you might expect, these comparison operators work the same way as > and >= work, only in

reverse.

Did you just use < on a character field? Of course you did. You can use any of these operators on

any data type. The result varies by data type.

B.4 Inequalities (<> or! =)

When you need to find everything except for certain data, use the inequality symbol, which can be

either <> or! =, depending on your SQL implementation.

NOTE: Notice that both symbols, <> and! =, can express "not equals."

The use of comparison operators:

TABLE FRIENDS

OPERATOR EXAMPLE

Equal (=)

SELECT *

FROM FRIENDS

WHERE FIRSTNAME = 'JD';

Greater Than (>) and Greater Than or Equal

To (>=)

SELECT *

FROM FRIENDS

WHERE AREACODE > 300;

Less Than (<) and Less Than or Equal To (<=) SELECT *

FROM FRIENDS

WHERE STATE < 'LA';

Inequalities (<> or! =)

SELECT *

FROM FRIENDS

WHERE FIRSTNAME <> 'AL';

C. LIKE operator

Character Operators:

You can use character operators to manipulate the way character strings are represented, both in

the output of data and in the process of placing conditions on data to be retrieved. This section

describes two character operators: the LIKE operator and the || operator, which conveys the

concept of character concatenation.

What if you wanted to select parts of a database that fit a pattern but weren't quite exact matches?

Page 46 of 146

You could use the equal sign and run through all the possible cases, but that process would be

boring and time-consuming. Instead, you could use LIKE. Consider the following:

The SQL LIKE clause is used to compare a value to similar values using wildcard operators. There are

two wildcards used in conjunction with the LIKE operator.

 The percent sign (%)

 The underscore (_)

The percent sign represents zero, one or multiple characters. The underscore represents a single

number or character. These symbols can be used in combinations.

Syntax

The basic syntax of % and _ is as follows –

SELECT FROM table_name WHERE column LIKE 'XXXX%'or
SELECT FROM table_name WHERE column LIKE '%XXXX%'or
SELECT FROM table_name WHERE column LIKE 'XXXX_' or
SELECT FROM table_name WHERE column LIKE '_XXXX' or
SELECT FROM table_name WHERE column LIKE '_XXXX_'
You can combine N number of conditions using ‘AND’ or ‘OR’ operators. Here, XXXX could be any

numeric or string value.

Example

The following table has a few examples showing the WHERE part having

different LIKE clause with '%' and '_' operators-

Sr.No. Statement & Description

1
WHERE SALARY LIKE '200%'

Finds any values that start with 200.

2
WHERE SALARY LIKE '%200%'

Finds any values that have 200 in any position.

3
WHERE SALARY LIKE '_00%'

Finds any values that have 00 in the second and third positions.

4
WHERE SALARY LIKE '2_%_%'

Finds any values that start with 2 and are at least 3 characters in length.

5
WHERE SALARY LIKE '%2'

Finds any values that end with 2.

6
WHERE SALARY LIKE '_2%3'

Finds any values that have a 2 in the second position and end with a 3.

7
WHERE SALARY LIKE '2___3'

Finds any values in a five-digit number that start with 2 and end with 3.

Page 47 of 146

EXAMPLES:

TABLE PARTS

Character

Operator

INPUT OUTPUT

Percent sign (%) SELECT *

FROM PARTS

WHERE LOCATION

LIKE '%BACK%';

TABLE FRIENDS:

Underscore (_) INPUT OUTPUT

SELECT *

FROM FRIENDS

WHERE STATE LIKE

'C_';

NOTE: You can use several underscores in a statement

D. Boolean operators

Boolean Expressions

SQL Boolean Expressions fetch the data based on matching a single value.

Following is the syntax –

SELECT column1, column2, columnN
FROM table_name
WHERE SINGLE VALUE MATCHING EXPRESSION;
Consider the CUSTOMERS table having the following records:

Page 48 of 146

The following table is a simple example showing the usage of various SQL

Boolean Expressions –

 Topic2: Sorting the rows retrieved by a query

A. ORDER by clause

The ORDER BY keyword is used to sort the result-set.

The ORDER BY keyword sorts the records in ascending order by default.

If you want to sort the records in a descending order, you can use the DESC keyword.

SQL ORDER BY Syntax

SELECT column_name(s)
FROM table_name
ORDER BY column_name(s) ASC|DESC
ORDER BY Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Tom Vingvn 23 Stavanger

Now we want to select all the persons from the table above, however, we want to sort the

persons by their last name.

We use the following SELECT statement:

SELECT * FROM Persons

ORDER BY LastName;

The result-set will look like this:

Page 49 of 146

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

4 Nilsen Tom Vingvn 23 Stavanger

3 Pattersen Kari Storgt 20 Stavanger

2 Svendson Tove Borgvn 23 Sandnes

B. ORDER BY DESC

Now we want to select all the persons from the table above, however, we want to sort the

persons descending by their last name.

We use the following SELECT statement:

SELECT * FROM Persons

ORDER BY LastName DESC;

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

3 Pattersen Kari Storgt 20 Stavanger

4 Nilsen Tom Vingvn 23 Stavanger

1 Hansen Ola Timoteivn 10 Sandnes

Learning Outcome 2.4: Use single-row functions to generate and retrieve

customized data

 Content/Topic 1: Using single-row functions

A. Using Character Case Conversion functions in a SELECT statement

A.1. TO_CHAR

The primary use of TO_CHAR is to convert a number into a character. Different implementations

may also use it to convert other data types, like Date, into a character, or to include different

formatting arguments. The next example illustrates the primary use of TO_CHAR:

A.2. TO_NUMBER

TO_NUMBER is the companion function to TO_CHAR, and of course, it converts a string into a

number. For example:

A.3. LOWER and UPPER

Page 50 of 146

As you might expect, LOWER changes all the characters to lowercase; UPPER does just the reverse.

A.4. INITCAP

INITCAP capitalizes the first letter of a word and makes all other characters lowercase.

 Content/Topic 2: Using Character Manipulation Functions in a select statement

A.5. CONCAT

You used the equivalent of this function, when you learned about operators. The || symbol splices

two strings together, as does CONCAT.

A.6. SUBSTR

This three-argument function enables you to take a piece out of a target string. The first argument

is the target string. The second argument is the position of the first character to be output. The

third argument is the number of characters to show.

A.7. LENGTH

LENGTH returns the length of its lone character argument

A.8. INSTR

To find out where in a string a particular pattern occurs, use INSTR. Its first argument is the target

string. The second argument is the pattern to match. The third and fourth are numbers

representing where to start looking and which match to report.

A.9. LPAD and RPAD

LPAD and RPAD take a minimum of two and a maximum of three arguments. The first argument is

the character string to be operated on. The second is the number of characters to pad it with, and

the optional third argument is the character to pad it with. The third argument defaults to a blank

or it can be a single character or a character string.

A.10. LTRIM and RTRIM

LTRIM and RTRIM take at least one and at most two arguments. The first argument, like LPAD and

RPAD, is a character string. The optional second element is either a character or character string or

defaults to a lank.

A.11. REPLACE

REPLACE does just that. Of its three arguments, the first is the string to be searched. The second is

the search key. The last is the optional replacement string. If the third argument is left out or NULL,

each occurrence of the search key on the string to be searched is removed and is not replaced with

anything.

Page 51 of 146

Some examples of their uses:

Function INPUT OUTPUT

 TO_CHAR

SELECT TESTNUM,
TO_CHAR (TESTNUM)
FROM CONVERT;

 TO_NUMBER

SELECT NAME, TESTNUM,
TESTNUM*TO_NUMBER
(NAME)
FROM CONVERT;

 LOWER and

UPPER

SELECT FIRSTNAME,

UPPER(FIRSTNAME),

LOWER(FIRSTNAME)

FROM CHARACTERS;

 INITCAP SELECT FIRSTNAME

BEFORE,

INITCAP(FIRSTNAME)

AFTER

FROM CHARACTERS;

 CONCAT

SELECT

CONCAT(FIRSTNAME,

LASTNAME) "FIRST AND

LAST NAMES"

FROM CHARACTERS;

 SUBSTR

SELECT FIRSTNAME,

SUBSTR (FIRSTNAME,2,3)

FROM CHARACTERS;

 LENGTH

SELECT FIRSTNAME,

LENGTH (RTRIM

(FIRSTNAME))

FROM CHARACTERS;

Page 52 of 146

 REPLACE SELECT LASTNAME,

REPLACE (LASTNAME,

'ST','**') REPLACEMENT

FROM CHARACTERS;

 Content/Topic 3: Using Numeric Functions in a select statement

A. ROUND Function:

It returns ‘n’ rounded to n places right of the decimal point. If ‘m’ is omitted, then n is rounded to 0

places. ‘m’ can be negative and rounds off the digits to the left of the decimal point. ‘m’ must be a

integer.

B. TRUNCATE Function:

It returns n truncated to m decimal places. If ‘m’ is omitted, ‘n’ is truncated to 0 places. ‘n’ can be

negative to truncate ‘m’ digits left to the decimal point.

C. CEIL Function:

It returns the smallest integer greater than or equals to ‘n’. The adjustment is done to the highest

nearest decimal value.

D. FLOOR Function:

It returns the largest integer less than or equals than n. The adjustment is done to the lowest

nearest decimal values.

E. MODULES Function:

MOD function returns remainder m divided by n. It returns m if n is 0.

F. POWER Function:

It returns m raised to the n power. The base m and the exponent n can be any numbers. If m is

negative then n must be an integer.

The following table shows how they are used:

FUNCTION SYNTAX EXAMPLE

 ROUND ROUND (n,m) SELECT ROUND(18.195,1) FROM DUAL;

 TRUNCATE TRUNC (n,m)

SELECT TRUNC (18.195,1) FROM DUAL;

SELECT TRUNC (15648, 2), TRUNC (7854.565, 0),

TRUNC (785.456,-1) FROM DUAL;

 CEIL CEIL (n)

SELECT CEIL (19.7) FROM DUAL;

SELECT CEIL (15.37), CEIL (45.45), CEIL(15)

Page 53 of 146

FROM DUAL;

 FLOOR FLOOR (n) SELECT FLOOR (19.7) FROM DUAL;

SELECT FLOOR (15.28), FLOOR (45,3) FROM

DUAL;

 MODULES MOD (n, m) SELECTMOD (14, 4), MOD (40, 2) FROM DUAL;

 POWER POWER (m, n) SELECT POWER (5, 2), POWER (-5, 2) FROM

DUAL;

 Content/Topic4: Using date functions in a select statement

We live in a civilization governed by times and dates, and most major implementations of SQL have

functions to cope with these concepts. This section uses the table PROJECT to demonstrate the

time and date functions.

NOTE: This table used the Date data type. Most implementations of SQL have a Date data type, but

the exact syntax may vary.

A. MONTHS_BETWEEN

If you need to know how many months fall between month x and month y, use MONTHS_BETWEEN

B. ADD_MONTHS

This function adds a number of months to a specified date. For example, say something

extraordinary happened, and the preceding project slipped to the right by two months. You could

make a new schedule.

C. LAST_DAY

LAST_DAY returns the last day of a specified month. It is for those of us who haven't mastered the

"Thirty days has September..." rhyme--or at least those of us who have not yet taught it to our

computers

D. NEXT_DAY

NEXT_DAY finds the name of the first day of the week that is equal to or later than another

specified date.

The following table shows some examples of their uses.

Page 54 of 146

Table PROJECT

FUNCTION INPUT OUTPUT

 MONTHS_BETWEEN

SELECT TASK, STARTDATE,

ENDDATE,MONTHS_BETWEEN(END

DATE,STARTDATE) DURATION

FROM PROJECT;

 ADD_MONTHS

SELECT TASK,

STARTDATE,

ENDDATE ORIGINAL_END,

ADD_MONTHS(ENDDATE,2)

FROM PROJECT;

 LAST_DAY

SELECT ENDDATE,

LAST_DAY(ENDDATE)FROM

PROJECT;

 NEXT_DAY

SELECT STARTDATE,

NEXT_DAY(STARTDATE, 'FRIDAY')

FROM PROJECT;

Page 55 of 146

ROUND and TRUNCATE functions in details

SQL Server ROUND () Function

Example

Round the number to 2 decimal places:

SELECT ROUND (235.415, 2) AS RoundValue

Definition and Usage

The ROUND () function rounds a number to a specified number of decimal places.

Syntax

ROUND (number, decimals, operation)

Parameter Values

Parameter Description

number Required. The number to be rounded

decimals Required. The number of decimal places to round number to

operation Optional. If 0, it rounds the result to the number of decimal. If another

value than 0, it truncates the result to the number of decimals. Default

value is 0

Technical Details

Works in: SQL Server (starting with 2008), Azure SQL Database, Azure SQL Data

Warehouse, Parallel Data Warehouse

More Examples

Example 1

Round the number to 2 decimal places, and also use the operation parameter:

Page 56 of 146

SELECT ROUND (235.415, 2, 1) AS RoundValue;

Example 2

Round the number to -1 decimal place:

SELECT ROUND (235.415, -1) AS RoundValue;

E. SQL TRUNCATE() function

SQL TRUNCATE() function truncate a number to a specified number of decimal places.

Overview of SQL TRUNCATE() function

The following shows the syntax of the TRUNCATE() function:

TRUNCATE(n, d)
The TRUNCATE() function returns n truncated to d decimal places. If you skip d, then n is truncated
to 0 decimal places. If d is a negative number, the function truncates the number n to d digits left to
the decimal point.
The TRUNCATE() function is supported by MySQL. However, MySQL requires
both n and d arguments.
Oracle and PostgreSQL provide the TRUNC() function which has the same functionality as
the TRUNCATE() function.
SQL Server, however, uses the ROUND() function with the third parameter that determines the
truncation operation:
ROUND(n,d, f)
If f is not zero, then the ROUND() function rounds n to the d number of decimal places.

SQL TRUNCATE() function examples

A) Using TRUNCATE function with a positive number of decimal places

The following statement shows how to use the TRUNCATE() function for a positive number:
SELECT TRUNCATE(123.4567,2);
The following shows the output:

In this example, the TRUNCATE() function truncated a number down to two decimal places.

B) Using TRUNCATE() function with a negative number of decimal places

The following example uses the TRUNCATE() function with a negative number of decimal places:
SELECT TRUNCATE(123.4567,-2);
The output is as follows:

In this example, the number of decimal places is, therefore,-2 the TRUNCATE() function truncated
two digits left to the decimal points.

http://www.mysqltutorial.org/mysql-math-functions/mysql-truncate/
http://www.postgresqltutorial.com/postgresql-trunc/

Page 57 of 146

C) Using TRUNCATE() function with table columns

The following statement finds the average salary of employees for each department:

SELECT
 department_name,
 TRUNCATE (AVG (salary),0) average_salary
FROM
 employees e
 INNER JOIN
 departments d ON d.department_id = e.department_id
GROUP BY
 department_name
ORDER BY
 average_salary;
In this example, we use the TRUNCATE () function to remove all numbers after the decimal points
from the average salary.
Here is the output:

Learning Outcome 2.5: Report aggregated data using group functions

 Topic 1: Group functions

Aggregate Functions in SQL

SQL provides grouping and aggregate operations, just like relational algebra.

Aggregate Functions are all about performing calculations on multiple rows, of a single column of a

table and returning a single value.

Types and syntax of aggregate functions

The ISO standard defines five (5) aggregate functions namely;

AVG – calculates the average of a set of values- computes average of values in the collection.

SUM – calculates the sum of values- sums the values in the collection.

MIN – gets the minimum value in a set of values- returns minimum value in the collection.

Page 58 of 146

MAX – gets the maximum value in a set of values- returns maximum value in the collection.

COUNT – counts rows in a specified table or view- counts number of elements in the collection.

Consider the following STUDENTS table

Function Syntax Example

COUNT () SELECT COUNT (column_name)
FROM table_name
WHERE condition;

SELECTCOUNT(*)ASCOUNT_STUD_AGEFROMSTUDENTS;

SELECTCOUNT(STUD_AGE)ASCOUNT_STUD_AGEFROMSTUDENTS;

Result:5

AVG () SELECT AVG (column_name)
FROM table_name
WHERE condition;

SELECTAVG(STUD_AGE) AS AVG_STUD_AGEFROMSTUDENTS;
Result: 19

SUM () SELECT SUM (column_name)
FROM table_name
WHERE condition;

SELECTSUM(STUD_AGE)ASSUM_STUD_AGEFROMSTUDENTS;

Result:99

MIN () SELECT MIN (column_name)
FROM table_name
WHERE condition;

SELECTMIN(STUD_AGE)ASMIN_STUD_AGEFROMSTUDENTS;

Result:19

MAX () SELECT MAX (column_name)
FROM table_name
WHERE condition;

SELECTMAX(STUD_AGE)ASMAX_STUD_AGEFROMSTUDENTS;

Result:21

NOTE: SUM and AVG require numeric inputs (obvious).

Why use aggregate functions? Aggregate functions allow us to easily produce summarized data

from our database. For instance, from our L5SOD2020 database, management may require

following reports: the youngest student, the eldest student, and the average age of the students.

We easily produce above reports using aggregate functions.

 Content/Topic 2: Using the DISTINCT keyword within group functions

DISTINCT Keyword

The DISTINCT keyword that allows us to omit duplicates from our results. This is achieved by

grouping similar values together. To appreciate the concept of Distinct, let’s execute a simple

query.

Page 59 of 146

With duplicate Removing duplicate

SELECTSTUD_AGEFROMSTUDENTS;

SELECTDISTINCTSTUD_AGEFROMSTUDENTS;

 Topic3: Using NULL values in a group function

Use this table STUDENTS

EXAMPLE1: the two give the same result

SELECTAVG(STUD_AGE)ASAVG_STUD_AGEFROMSTUDENTSWHERESTUD_AGE!='';

SELECTAVG(STUD_AGE)ASAVG_STUD_AGEFROMSTUDENTSWHERESTUD_AGE!='0';

Result:

EXAMPLE2: The two statements give the same result

SELECTAVG(STUD_AGE)ASAVG_STUD_AGEFROMSTUDENTSWHERESTUD_AGE='';

SELECTAVG(STUD_AGE)ASAVG_STUD_AGEFROMSTUDENTSWHERESTUD_AGE='0';

Result:

 Content/Topic 4: Grouping rows

GROUP BY and HAVING clauses with aggregate functions

Let continue to use our table STUDENTS above

Page 60 of 146

N
O

CLAUSE EXAMPLE RESULT

1

GROUP
BY

SELECTSTUD_SEX,MAX(STUD_AGE)AS MAX_STUD_AGE FROM
STUDENTS
GROUPBYSTUD_SEX;

SELECTSTUD_SEX,AVG(STUD_AGE) AS MAX_STUD_AGE
FROM STUDENTS WHERESTUDID! ='S04'
GROUPBYSTUD_SEX;

2 HAVIN
G

SELECTSTUD_SEX,AVG(STUD_AGE)ASAVG_STUD_AGEFROMST
UDENTS
GROUPBYSTUD_SEX
HAVINGSTUD_SEX='MALE';

Learning Outcome 2.6: Retrieve data from multiple tables using joins

 Content/Topic 1: Types of JOINS and their syntax

The SQL Joins clause is used to combine records from two or more tablesin a database. A JOIN is a

means for combining fields from two tables byusing values common to each.

A. Natural join

Page 61 of 146

Select Empid, Name, City from Employee
NATURAL JOIN Department;
Consider the following two tables: Table STUDENTS and Table COURSE;

Table STUDENTS;

Table COURSE;

Example 2/ try it by yourself to see the result
Select* from STUDENTS, COURSE;
OR
SELECTS.STUDID,S.STUD_NAME,S.STUD_CLASS,S.STUD_AGE,S.STUD_SEX,
C.COURSEID,C.COURSE_INFO,C.COURSE_TYPE,C.COURSE_WEEK,C.COURSE_WEIGHT,C.STUDID
FROMSTUDENTSS,COURSEC;
TIP: When you join two tables without the use of a WHERE clause, you are performing a Cartesian

join. This join combines all rows from all the tables in the FROM clause. If each table has 200 rows,

then you will end up with 40,000 rows in your results (200 x 200). Always join your tables in the

WHERE clause unless you have a real need to join all the rows of all the selected tables.

SELECT*FROMSTUDENTS,COURSE
WHERESTUDENTS.STUDID=COURSE.STUDID;
OR
SELECTS.STUDID,S.STUD_NAME,S.STUD_CLASS,S.STUD_AGE,S.STUD_SEX,
C.COURSEID,C.COURSE_INFO,C.COURSE_TYPE,C.COURSE_WEEK,C.COURSE_WEIGHT,C.STUDID
FROMSTUDENTSS,COURSEC
WHERES.STUDID=C.STUDID;

Page 62 of 146

Result:

B. Join with the using WHERE clause

Here, it is noticeable that the join is performed in the WHERE clause.

Several operators can be used to join tables, such as =, <, >, <>, <=, >=,!=, BETWEEN, LIKE, and NOT;

they can all be used to join tables. However, the most common operator is the equal to symbol.

Example 1:

SELECTSTUDENTS.STUDID,STUDENTS.STUD_NAME,STUDENTS.STUD_CLASS,
COURSE.COURSEID,COURSE.COURSE_TYPE,COURSE.COURSE_WEEK
FROMSTUDENTS
LEFTJOINCOURSE
ONSTUDENTS.STUDID=COURSE.STUDIDWHERECOURSE_TYPE='SPECIFIC'
ORDERBYSTUDENTS.STUD_NAME;

RESULT:

Example 2:

SELECTSTUDENTS.STUDID,STUDENTS.STUD_NAME,STUDENTS.STUD_CLASS,
COURSE.COURSEID,COURSE.COURSE_TYPE,COURSE.COURSE_WEEK
FROMSTUDENTS
LEFTJOINCOURSE
ONSTUDENTS.STUDID=COURSE.STUDIDWHERECOURSE_TYPE='GENERAL'
ORDERBYSTUDENTS.STUD_NAME;

RESULT:

Example3

SELECTSTUDENTS.STUDID,STUDENTS.STUD_NAME,STUDENTS.STUD_AGE,STUDENTS.STUD_CLASS,
COURSE.COURSEID,COURSE.COURSE_TYPE,COURSE.COURSE_WEEK
FROMSTUDENTS
LEFTOUTERJOINCOURSE
ONCOURSE.STUDID=STUDENTS.STUDIDwhereSTUD_AGE>19
ORDERBYSTUDENTS.STUD_NAME;

Result:

Page 63 of 146

C. Join with the ON clause

 SQL LEFT JOIN

The LEFT JOIN keyword returns all rows from the left table (table_name1), even if there are

no matches in the right table (table_name2).

SQL LEFT JOIN Syntax

SELECT column_name(s)

FROM table_name1

LEFT JOIN table_name2

ON table_name1.column_name=table_name2.column_name

Note: In some databases LEFT JOIN is called LEFT OUTER JOIN.

SQL LEFT JOIN Example

Consider the two tables (STUDENTS, COURSES)

Now we want to list all the STUDENTS and their COURSES- if any, from the tables above.

We use the following SELECT statement:

SELECTSTUDENTS.STUDID,STUDENTS.STUD_NAME,STUDENTS.STUD_CLASS,
COURSE.COURSEID,COURSE.COURSE_TYPE,COURSE.COURSE_WEEK
FROMSTUDENTS
LEFTJOINCOURSE
ONSTUDENTS.STUDID=COURSE.STUDID
ORDERBYSTUDENTS.STUD_NAME;
Or

SELECTSTUDENTS.STUDID,STUDENTS.STUD_NAME,STUDENTS.STUD_CLASS,
COURSE.COURSEID,COURSE.COURSE_TYPE,COURSE.COURSE_WEEK
FROMSTUDENTS
LEFTOUTERJOINCOURSE
ONSTUDENTS.STUDID=COURSE.STUDID
ORDERBYSTUDENTS.STUD_NAME;

Page 64 of 146

D. SQL RIGHT(OUTER) JOIN

The RIGHT JOIN keyword Return all rows from the right table (table_name2), even if there

are no matches in the left table (table_name1).

SQL RIGHT JOIN Syntax

SELECT column_name(s)

FROM table_name1

RIGHT JOIN table_name2

ON table_name1.column_name=table_name2.column_name

Note: In some databases RIGHT JOIN is called RIGHT OUTER JOIN.

SQL RIGHT JOIN Example

Consider the two tables (STUDENTS, COURSES)

SELECTSTUDENTS.STUDID,STUDENTS.STUD_NAME,STUDENTS.STUD_CLASS,

COURSE.COURSEID,COURSE.COURSE_TYPE,COURSE.COURSE_WEEK

FROMSTUDENTS

RIGHTJOINCOURSE

ONCOURSE.STUDID=STUDENTS.STUDID

ORDERBYSTUDENTS.STUD_NAME;

OR

SELECTSTUDENTS.STUDID,STUDENTS.STUD_NAME,STUDENTS.STUD_CLASS,

COURSE.COURSEID,COURSE.COURSE_TYPE,COURSE.COURSE_WEEK

FROMSTUDENTS

RIGHT OUTER JOINCOURSE

ONCOURSE.STUDID=STUDENTS.STUDID

ORDERBYSTUDENTS.STUD_NAME;

The RIGHT JOIN keyword returns all the rows from the right table (STUDENTS), even if there areno

matches in the left table (COURSE)

Page 65 of 146

E. SQL FULL(OUTER) JOIN

The FULL JOIN keyword return rows when there is a match in one of the tables.

SQL FULL JOIN Syntax

SELECT column_name(s)

FROM table_name1

FULL JOIN table_name2

ON table_name1.column_name=table_name2.column_name

SQL FULL JOIN Example

Continue with our two tables

SELECTSTUDENTS.STUDID,STUDENTS.STUD_NAME,STUDENTS.STUD_CLASS,
COURSE.COURSEID,COURSE.COURSE_TYPE,COURSE.COURSE_WEEK
FROMSTUDENTS
FULLJOINCOURSE
ONCOURSE.STUDID=STUDENTS.STUDID
ORDERBYSTUDENTS.STUD_NAME;
The FULL JOIN keyword returns all the rows from the left table STUDENTS, and all the rows

from the right table COURSE. If there are rows in "STUDENTS" that do not have matches in"

COURSE” or if there are rows in "COURSE" that do not have matches in "STUDENTS", those rows

will be listed as well.

F. SELF JOIN

A self-join is a join in which a table is joined with itself (which is also called Unary relationships),

especially when the table has a FOREIGN KEY which references its own PRIMARY KEY. To join a

table itself means that each row of the table is combined with itself and with every other row of the

table.

The self-join can be viewed as a join of two copies of the same table. The table is not actually

copied, but SQL performs the command as though it were.

The syntax of the command for joining a table to itself is almost same as that for joining two

Page 66 of 146

different tables. To distinguish the column names from one another, aliases for the actual the

tablename are used, since both the tables have the same name. Table name aliases are defined in

the FROM clause of the SELECT statement.

SELF JOIN Syntax:

SELECT a.column_name, b.column_name...

FROM table1 a, table1 b

WHERE a.common_filed = b.common_field;

Example of SQL SELF JOIN

Let continue with our table STUDENTS

EXAMPLE1

SELECTS.STUDID,S.STUD_NAME,S.STUD_CLASS,S.STUD_AGE,S.STUD_SEX,

T.STUDID,T.STUD_NAME,T.STUD_CLASS,T.STUD_AGE,T.STUD_SEX

FROMSTUDENTSS,STUDENTST

WHERES.STUDID=T.STUDID;

RESULT:

EXAMPLE2

SELECTS.STUDID,S.STUD_NAME,

T.STUDID,T.STUD_NAME

FROMSTUDENTSS,STUDENTST

WHERES.STUDID=T.STUDID;

RESULT

G. Non-Equi-Joins

Because SQL supports an equi-join, you might assume that SQL also has a non-equi-join. You would

be right! Whereas the equi-join uses an = sign in the WHERE statement, the non-equi-join uses

everything but an >sign. For example:

SELECTS.STUDID,S.STUD_NAME,S.STUD_CLASS,S.STUD_AGE,S.STUD_SEX,

Page 67 of 146

T.STUDID,T.STUD_NAME,T.STUD_CLASS,T.STUD_AGE,T.STUD_SEX

FROMSTUDENTSS,STUDENTST

WHERES.STUDID>T.STUDID;

ANALYSIS:

This listing goes on to describe all the rows in the join WHERE S.STUDID>T.STUDID. This information

doesn't have much meaning, and in the real world the equi-join is far more common than the non-

equi-join. However, you may encounter an application in which a non-equi-join produces the

perfect result.

Learning Outcome 2.7: Use sub-queries to solve problems

 Content/Topic 1: Sub-query

Subqueries: The Embedded SELECT Statement

A Subquery or Inner query or a Nested query is a query within another SQL query and embedded

within the WHERE clause.

A subquery is used to return data that will be used in the main query as a condition to further

restrict the data to be retrieved.

Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements along with the

operators like =, <, >, >=, <=, IN, BETWEEN, etc.

There are a few rules that subqueries must follow:

 Subqueries must be enclosed within parentheses.

 A subquery can have only one column in the SELECT clause, unless multiple

columns are in the main query for the subquery to compare its selected columns.

 An ORDER BY command cannot be used in a subquery, although the main query can use an

ORDER BY. The GROUP BY command can be used to perform the same function as the ORDER BY in

a subquery.

 Subqueries that return more than one row can only be used with multiple value operators such as

the IN operator.

 A subquery cannot be immediately enclosed in a set function.

 The BETWEEN operator cannot be used with a subquery. However, the BETWEEN operator can be

used within the subquery.

A subquery is a query whose results are passed as the argument for another query. Subqueries

enable you to bind several queries together.

Page 68 of 146

Building a Subquery,

Simply put, a subquery lets you tie the result set of one query to another. The general syntax is as

follows:

Subqueries with the SELECT Statement

Subqueries are most frequently used with the SELECT statement. The basic

syntax is as follows:

SELECT column_name [, column_name]

FROM table1 [, table2]

WHERE column_name OPERATOR

(SELECT column_name [, column_name]

FROM table1 [, table2]

[WHERE] [condition])

Simply

SELECT *

FROM TABLE1

WHERE TABLE1.SOMECOLUMN =

(SELECT SOMEOTHERCOLUMN

FROM TABLE2

WHERE SOMEOTHERCOLUMN = SOMEVALUE)

Notice how the second query is nested inside the first. Here's a real-world example that uses the

STUDENTS and COURSE tables:

Consider the two tables (STUDENTS, COURSE)

ANALYSIS:

The tables share a common field called STUDID. Suppose that you didn't know (or didn't want to

know) the STUDID, but instead wanted to work with the description of the part. Using a subquery,

you could type this:

SELECT*

FROM STUDENTS

WHERE STUDID IN(SELECTSTUDID

FROMSTUDENTS

WHERESTUD_AGE> 19);
RESULT

A. Single-row sub-queries

A.1. Using Aggregate Functions (Group functions) with Sub queries

The aggregate functions SUM, COUNT, MIN, MAX, and AVG all return a single value. To find the

average amount of an order, type this:

Page 69 of 146

SELECT*(SELECTAVG (STUD_AGE)STUD_AGE

FROMSTUDENTS,COURSE

WHERESTUDENTS.STUDID=COURSE.STUDID);

Name of students who have the age greater than the average age

SELECTSTUD_NAMEFROMSTUDENTSWHERESTUD_AGEIN (SELECTAVG

(STUD_AGE)STUD_AGEFROMSTUDENTSWHERESTUD_AGE>19);

A.2. HAVING clause with sub-queries

A HAVING clause can be implemented as a nested query in the FROM clause.

INPUT:

SELECTSTUD_NAME,COUNT (*)ASTOTAL_STUD_NAME

FROMSTUDENTSGROUPBYSTUD_NAME

HAVINGCOUNT (*) <=5;

B. Multiple-row sub-queries

Using ALL or ANY operator

Set Comparison Tests

Can compare a value to a set of values?

Is a value larger/smaller/etc. than some value in the set?

Example:

“Find all students with age greater than average which is not average of students whose age

greater than 19.

SELECTSTUD_NAME FROMSTUDENTS WHERE STUD_AGE>SOME (SELECTAVG

(STUD_AGE)STUD_AGEFROMSTUDENTSWHERESTUD_AGE>19);

General form of test:

Can use any comparison operation

= SOME is same as IN

ANY is a synonym for SOME

Can also compare a value with all values in a set

Use ALL instead of SOME

<> ALL is same as NOT IN

SELECTSTUD_NAMEFROMSTUDENTSWHERESTUD_AGE>ANY

(SELECTAVG(STUD_AGE)STUD_AGEFROMSTUDENTSWHERESTUD_AGE>0);

Page 70 of 146

SELECTSTUD_NAMEFROMSTUDENTSWHERESTUD_AGE>SOME

(SELECTAVG(STUD_AGE)STUD_AGEFROMSTUDENTSWHERESTUD_AGE>0);

Learning Outcome 2.8: Use of set operators

 Content/Topic1: Using SET OPERATORS

A. UNION and UNION ALL operator

SQL - UNIONS CLAUSE

The SQL UNION clause/operator is used to combine the results of two or

more SELECT statements without returning any duplicate rows.

To use this UNION clause, each SELECT statement must have:

 The same number of columns selected

 The same number of column expressions

 The same data type and

 Have them in the same order But they need not have to be in the same length

The basic syntax of a UNION clause is as follows:

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

UNION

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

Here, the given condition could be any given expression based on yourrequirement.

Example

Consider the following two tables (CUSTOMER, ORDERS)

Table CUSTOMER

Table ORDERS

Now, let us join these two tables in our SELECT statement as follows:

Page 71 of 146

INPUT OUTPUT

SELECTCNAME,AMOUNT

FROMCUSTOMER

LEFTJOINORDERS

ONCUSTOMER.CID=ORDERS.CID

UNION

SELECTCNAME,AMOUNT

FROMCUSTOMER

RIGHTJOINORDERS

ONCUSTOMER.CID=ORDERS.CID;

B. The UNION ALL Clause

The UNION ALL operator is used to combine the results of two SELECT statements including

duplicate rows.

The same rules that apply to the UNION clause will apply to the UNION ALL operator.

Syntax

The basic syntax of the UNION ALL is as follows.

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

UNION ALL

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

Here, the given condition could be any given expression based on your requirement.

Example

Consider our two tables (CUSTOMER, ORDERS)

Now, let us join these two tables in our SELECT statement as follows:

Page 72 of 146

INPUT OUTPUT

SELECTCNAME,AMOUNT

FROMCUSTOMER

LEFTJOINORDERS

ONCUSTOMER.CID=ORDERS.CID

UNIONALL

SELECTCNAME,AMOUNT

FROMCUSTOMER

RIGHTJOINORDERS

ONCUSTOMER.CID=ORDERS.CID;

C. INTERSECT Clause

There are two other clauses (i.e., operators), which are like the UNION clause.

SQL INTERSECT Clause- This is used to combine two SELECT statements, but returns rows

only from the first SELECT statement that are identical to a row in the second SELECT

statement.

D. EXCEPT or MINUS Clause

SQL EXCEPT Clause- This combines two SELECT statements and returns rows

from the first SELECT statement that are not returned by the second SELECT

statement.

 Continue with our two tables

 Example using INTERSECT:

INPUT OUTPUT

SELECTCNAME,AMOUNT

FROMCUSTOMER

LEFTJOINORDERS

ONCUSTOMER.CID=ORDERS.CID

INTERSECT

SELECTCNAME,AMOUNT

FROMCUSTOMER

RIGHTJOINORDERS

ONCUSTOMER.CID=ORDERS.CID;

Page 73 of 146

Example using EXCEPT:

INPUT OUTPUT

SELECT*

FROMCUSTOMER

LEFTJOINORDERS

ONCUSTOMER.CID=ORDERS.CI

D

EXCEPT

SELECT*

FROMCUSTOMER

RIGHTJOINORDERS

ONCUSTOMER.CID=ORDERS.CI

D;

Learning Outcome 2.9: Use data manipulation language (DML) statements to

update table data.

 Content/Topic 1: Adding new rows in a table

INSERT Statement

SELECT*FROMCUSTOMER;

Result:

There is no record, now we are going to use INSERT Statement

The INSERT Statement

The INSERT statement enables you to enter data into the database table. It can be broken down

into two statements:

INSERT...VALUES and INSERT...SELECT

The INSERT...VALUES Statement,

The INSERT...VALUES statement enters data into a table one record at a time. It is useful for small

operations that deal with just a few records. The syntax of this statement is as follows:

SYNTAX:

INSERT INTO table_name

(col1, col2...)

VALUES(value1, value2...)

Example:

Let insert the records (rows) in the table (table CUSTOMER)

Page 74 of 146

INSERT INTO CUSTOMER(CLAST_NAME,CFIRST_NAME,CAGE,CADDRESS,CSALARY)

Values

('KAZE',' OLGA',32,'KIGALI', 2000),('ISHIMWE','NAOME',25,'KAMONYI',1500),

('ISHIMWE',' SAMUEL',23,'MUHANGA',2000),('GATETE',' YOUSSOUF',25,'RUHANGO',6500),

(' NISHIMWE',' ALICE',27,'NYANZA',4500),('TUYIZERE',' JOSIANE',22,'HUYE',4500),('UWIRAGIYE','

MONIQUE',24,'NYAMAGABE',10000);

(7 row(s) affected)

Or

INSERT INTO CUSTOMER values ('KAZE',' OLGA',32,'KIGALI', 2000),

('ISHIMWE',' NAOME',25,'KAMONYI',1500),('ISHIMWE',' SAMUEL',23,'MUHANGA',2000),('GATETE','

YOUSSOUF',25,'RUHANGO',6500),

(' NISHIMWE',' ALICE',27,'NYANZA',4500),('TUYIZERE',' JOSIANE',22,'HUYE',4500),('UWIRAGIYE','

MONIQUE',24,'NYAMAGABE',10000);

(7 row(s) affected)

Or

INSERT INTO CUSTOMER values ('KAZE',' OLGA',32,'KIGALI', 2000);

INSERT INTO CUSTOMER values ('ISHIMWE',' NAOME',25,'KAMONYI',1500);

INSERT INTO CUSTOMER values ('ISHIMWE',' SAMUEL',23,'MUHANGA',2000);

INSERT INTO CUSTOMER values ('GATETE',' YOUSSOUF',25,'RUHANGO',6500);

INSERT INTO CUSTOMER values (' NISHIMWE',' ALICE',27,'NYANZA',4500);

INSERT INTO CUSTOMER values ('TUYIZERE',' JOSIANE',22,'HUYE',4500);

INSERT INTO CUSTOMER values ('UWIRAGIYE',' MONIQUE',24,'NYAMAGABE',10000);

Let verify if the records are there by executing a simple SELECT statement.

SELECT*FROMCUSTOMER;

Result:

NOTE:

The INSERT statement does not require column names. If the column names are not entered, SQL

lines up the values with their corresponding column numbers. In other words, SQL inserts the first

value into the first column, the second value into the second column, and so on. And the insertion

will be possible if the value matches the data type of that column you are inserting in value.

For example/try it by yourself to see the result

INSERT INTO CUSTOMER values ('MONIQUE',' NYAMAGABE','24','UWIRAGIYE',10000);

(1 row(s) affected)

Page 75 of 146

As you can see the record 8 is not ordered like others

Inserting NULL Values

WARNING:You could insert spaces for a null column, but these spaces will be treated as a value.

NULL simply means nothing is there.

EXAMPLE:

INSERT INTO CUSTOMER1 values ('','BRUCE','19','RWAMAGANA',5000);

Here the insert has inserted a new customer who does not have last name

The INSERT...SELECT Statement/ seen when we were learning subqueries

Here is an example:

You are selecting all the rows that are in CUSTOMER and inserting them into CUSTOMER_COPY.

Note: the destination table should have the same properties of the origin table and these two

tables should be in the same database.

Let create another table that will contain the records of table CUSTOMER.

CREATE TABLECUSTOMER_COPY(

CID INT IDENTITY (1, 1) NOT NULL,

CLAST_NAME VARCHAR (50),

CFIRST_NAME VARCHAR (40),

CAGE int,

CADDRESS VARCHAR (30),

CSALARY money,

PRIMARY KEY (CID));

From the above,

Destination table: CUSTOMER_COPY and origin table: CUSTOMER

INSERT INTO Destination table

SELECT CLAST_NAME,CFIRST_NAME,CAGE,CADDRESS,CSALARYFROMCUSTOMER;

INSERT INTO CUSTOMER_COPY

SELECTCLAST_NAME, CFIRST_NAME,CAGE,CADDRESS,CSALARY FROM CUSTOMER;

(9 row(s) affected)

 Content/Topic 2: Changing data in a table

The UPDATE Statement

The purpose of the UPDATE statement is to change the values of existing records.

Page 76 of 146

SYNTAX:

UPDATE table_name

SET columnname1 = value1

[, columname2 = value2]...

WHERE search_condition

This statement checks the WHERE clause first. For all records in the given table in which the WHERE

clause evaluates to TRUE, the corresponding value is up.

Example

Continue with our table CUSTOMER

This example illustrates the use of the UPDATE statement:

UPDATE CUSTOMER SET CLAST_NAME='SIBOMANA'WHERE CID=9;

(1 row(s) affected)

Here is a multiple-column update:

UPDATE CUSTOMER SET

CLAST_NAME='UWIRAGIYE',CFIRST_NAME='MONIQUE',CADDRESS='NYARUGURU',CSALARY=4000

WHERE CID=8;

Warning: Trying to update the value without where condition will update the entire column with

one value. For example, having the following table CUSTOMER;

Execute the following statement to see the result

UPDATE CUSTOMER SET CLAST_NAME='MUVARA';

Page 77 of 146

 Content/Topic 3: Removing rows from a table

A. The TRUNCATE TABLE Statement

What if we only want to delete the data inside the table, and not the table itself?

Then, use the TRUNCATE TABLE statement:

TRUNCATE TABLE table_name;

Example /try it by yourself to see the result

TRUNCATE TABLE CUSTOMER;

You can also use DROP TABLE command to delete complete table but itwould remove complete

table structure form the database and you wouldneed to re-create this table once again if you wish

you store some data.

B. DELETE statement

DELETE command is used to delete the records in a table.

DELETE

Syntax:

DELETE FROM table_name

WHERE {CONDITION};

Example: Consider the table CUSTOMER;

DELETE FROM CUSTOMER WHERECID=9;
DELETE FROM CUSTOMER will delete all records

DELETE FROM CUSTOMER;

Note: DELETE command deletes the contents but DROP deletes the structure of the table or

database and once it is dropped you need to recreate.

 Content/Topic4. Database transaction control

What is a transaction?

A transaction is a logical unit of work that contains one or more SQL statements. A transaction is an

atomic unit. The effects of all the SQL statements in a transaction can be either all committed

(applied to the database) or all rolled back (undone from the database), insuring data consistency.

Properties of Transactions

Transactions have the following four standard properties, usually referred to by the acronym ACID.

Property Description

Atomicity Ensures that all operations within the work unit are completed successfully.

Otherwise, the transaction is aborted at the point of failure and all the previous

operations are rolled back to their former state.

Page 78 of 146

Consistency Ensures that the database properly changes states upon a successfully committed

transaction.

Isolation Enables transactions to operate independently of and transparent to each other.

Durability Ensures that the result or effect of a committed transaction persists in case of a

system failure.

The following commands are used to control transactions but we are going to focus on the first

three.

Command Description

COMMIT Used to save the changes

ROLLBACK Used to roll back the changes

SAVEPOINT Used to create points within the groups of transactions in which to

ROLLBACK.

SET TRANSACTION Places a name on a transaction.

Transactional Control Commands

Transactional control commands are only used with the DML

Commands such as INSERT, UPDATE and DELETE only. They cannot be used while creating tables or

dropping them because these operations are automatically committed in the database.

A. The COMMIT Command

The COMMIT command is the transactional command used to save changes invoked by a

transaction to the database.

The COMMIT command is the transactional command used to save changes invoked by a

transaction to the database. The COMMIT command saves all the transactions to the database

since the last COMMIT or ROLLBACK command.

The syntax for the COMMIT command is as follows.

COMMIT;

Example

Consider the CUSTOMER table having the following records

Page 79 of 146

Following is an example which would delete those records from the table

which have age = 24 and then COMMIT the changes in the database.

BEGIN TRANSACTION

DELETE FROM CUSTOMER

WHERE CAGE= 24;

COMMIT;

(1 row(s) affected)

Thus, two rows from the table would be deleted and the SELECT statement

would produce the following result.

B. The ROLLBACK Command

The ROLLBACK command is the transactional command used to undo transactions that have not

already been saved to the database. This command can only be used to undo transactions since the

last COMMIT or ROLLBACK command was issued.

The syntax for a ROLLBACK command is as follows

ROLLBACK;

Example

Consider the CUSTOMER table having the following records

Page 80 of 146

Following is an example, which would delete those records from the table

which have the age = 24 and then ROLLBACK the changes in the database.

BEGINTRANSACTION

DELETEFROMCUSTOMER

WHERECAGE= 24;

ROLLBACK;

Thus, the delete operation would not impact the table and the SELECT statement would produce

the following result.

C. The SAVEPOINT Command

A SAVEPOINT is a point in a transaction when you can roll the transaction back to a certain point

without rolling back the entire transaction.

The syntax for a SAVEPOINT command is as shown below.

SAVEPOINTSAVEPOINT_NAME;

This command serves only in the creation of a SAVEPOINT among all the transactional statements.

The ROLLBACK command is used to undo a group of transactions.

The syntax for rolling back to a SAVEPOINT is as shown below.

ROLLBACK TO SAVEPOINT_NAME;

Following is an example where you plan to delete the three different records from the CUSTOMER

table. You want to create a SAVEPOINT before each delete, so that you can ROLLBACK to any

SAVEPOINT at any time to return the appropriate data to its original state.

Example

Consider the CUSTOMER table having the following records.

Page 81 of 146

The following code block contains the series of operations

Begin tran

DELETE FROM CUSTOMER WHERE CID=1;

Save tran point1;

Begin tran

DELETE FROM CUSTOMER WHERE CID=2;

Save tran point2;

Begin tran

DELETE FROM CUSTOMER WHERE CID=3;

Save tran point3;

Note that you can use tran as a short form of transaction.

Now that the three deletions have taken place, let us assume that you have changed your mind and

decided to undo (ROLLBACK) to the original records.

Begin tran

ROLLBACK;

Notice that no deletion took place since you rolled back.

SELECT*FROMCUSTOMER;

Note: the CID may change because of your declaration while creating the data, especially when you

declared it as auto increment.

Page 82 of 146

Learning Outcome 2.10: Execute database Stored procedure, index

 Content/Topic1: Description of stored procedure

A. Definition

A stored procedure is a set of Structured Query Language (SQL) statements with an assigned name,

which are stored in a relational database management system as a group, so it can be reused and

shared by multiple programs.

B. Advantages and disadvantages

Advantages of using SQL Stored Procedures

Maintainability - If we have multiple numbers of applications and we want to do some changes in

procedure, then we just need to change the procedure, not all the applications. So, the

maintenance is easier for stored procedure

Security - Stored Procedure not just secure the data and access code but also it applies the security

within the application code. Also, it limits the direct access to tables. Securing our data is what all

we need and so Stored Procedures do.

Testing - We can test stored procedure without any dependency of the application.

Speed - It has a good speed because stored procedures are saved in the cache memory, so we don’t

need to extract them from the base every time. We can easily use them through this cache on the

server.

Replication - We can replicate the stored procedure from one database to another. Also, we can

revise the policies on a central server rather than on individual servers.

So, these were all the major benefits of Stored Procedures.

Disadvantages of using SQL Stored Procedures

* Writing and maintaining stored procedures requires more specialized skills.

* There are no debuggers available for stored procedures

* Stored procedure language may differ from one database system to another

* Poor exception handling

* Tightly coupled to the database system

Page 83 of 146

* Not possible to use objects

* Sometimes it is hard to understand the logic written in dynamic SQL

C. Syntax in SQL

CREATE PROCEDURE PROCEDURE_NAME

<@parameter1 data type,

<@parameter2 data type,

AS

BEGIN

SQL operation (eg; SELECT @parameter2 from table name)

END

GO

Syntax in MySQL

DELIMITER

CREATE PROCEDURE procedureName

(

)

BEGIN

SQL STATEMENT

END//

DELIMITER

 Content/Topic 2: Performing stored

A. Procedure with one parameter

EXAMPLE 1

Suppose that we have this table: CLASS, DATABASE: CONTROLS

TABLE: CLASS

Page 84 of 146

In this example we will query the CLASS table from the CONTROLS database, but instead of getting

back all records we will limit it to just a particular name. This example assumes there will be an

exact match on the name value that is passed.

CREATE PROCEDURE dbo.uspGetNAME@NAME nvarchar (30)
AS
BEGIN
SELECT*
FROM CLASS
WHERE NAME=@NAME
END
GO

To call this stored procedure we would execute it as follows:

EXEC dbo.uspGetNAME@NAME='ABHI'

Result

EXEC dbo.uspGetNAME@NAME='Rahul';
Result:

EXAMPLE2

Consider the following table: CUSTOMER

CREATE PROCEDURE dbo.uspGetCADDRESS@CADDRESS nvarchar (30)
AS
BEGIN
SELECT*
FROMCUSTOMER

Page 85 of 146

WHERECADDRESS=@CADDRESS
END
GO

To call this stored procedure we would execute it as follows:

EXEC dbo.uspGetCADDRESS@CADDRESS='NYAMAGABE';

Deleting the Stored Procedure

If you created the stored procedure and you want to recreate the stored procedure with the same

name, you can delete it using the following before trying to create it again.

Syntax: DROPPROCEDURE PROCEDURE_NAME

EXAMPLE:

DROP PROCEDURE dbo.uspGetCADDRESS

If you try to create the stored procedure and it already exists you will get an error message.

B. Performing stored procedure with multiple parameters

Setting up multiple parameters is very easy to do. You just need to list each parameter and the

data type separated by a comma as shown below.

CREATE PROCEDURE dbo.uspGetCUSTOMERDETAIL1
@CFIRST_NAME nvarchar (30),
@CADDRESS nvarchar (30)
AS
BEGIN
SELECT@CADDRESS, @CFIRST_NAME
FROMCUSTOMER
WHERECADDRESS=@CADDRESSANDCFIRST_NAME=@CFIRST_NAME
END
GO

 Content/Topic 3: Description of SQL index

A. Definition

An index, as you would expect, is a data structure that the database uses to find records

within a table more quickly. Indexes are built on one or more columns of a table; each index

Page 86 of 146

maintains a list of values within that field that are sorted in ascending or descending order.

Rather than sorting records on the field or fields during query execution, the system can

simply access the rows in order of the index.

B. Advantages and disadvantages

Advantages of indexes:

Their use in queries usually results in much better performance.

They make it possible to quickly retrieve (fetch) data.

They can be used for sorting. A post-fetch-sort operation can be eliminated.

Unique indexes guarantee uniquely identifiable records in the database.

Disadvantages of indexes:

They decrease performance on insert, updates, and deletes.

They take up space (these increases with the number of fields used and the length of the

fields).

Some databases will mono-case (case insensitive) values in fields that are indexed.

C. Syntax of index

Syntax: As you would expect by now, the SQL to create an index is:

CREATE INDEX <indexname> ON <tablename> (<column>, <column>...);

To enforce unique values, add the UNIQUE keyword:

CREATE UNIQUE INDEX <indexname> ON <tablename> (<column>,<column>...);

To specify sort order, add the keyword ASC or DESC after each column name, just as you

would do in an ORDER BY clause.

To remove an index, simply enter:

DROP INDEX <indexname>;

ALTER COMMAND TO ADD AND DROP INDEX

DROP INDEX Statement In MySQL

ALTER TABLEtable_name DROP INDEXindex_name;

ADD an INDEX

ALTER TABLE tbl_name ADD UNIQUE index_name (column_list)

Page 87 of 146

- This statement creates an index for which the values must be unique (except for the NULL values,

which may appear multiple times).

ALTER TABLE tbl_name ADD INDEX index_name (column_list)

This adds an ordinary index in which any value may appear more than once.

SHOW INDEXES CREATED ON A TABLE

EXAMPLE: To display all indexes of the persons table:

SHOW INDEXES FROM PERSONS;

 Content/Topic 4: Index execution

Syntax:

SELECT select_list FROM table_name USE INDEX (index_list or index_name) WHERE

condition;

Let’s use the table CUSTOMER

CREATE INDEX CUSTOMERINDEX ON

CUSTOMER(CLAST_NAME,CFIRST_NAME,CAGE,CADDRESS,CSALARY);

Let drop CUSTOMERINDEX,

DROP INDEX CUSTOMERINDEX ON CUSTOMER;

Page 88 of 146

Learning Unit 3-Interact with database

Learning Outcome 3.1: Identify different data file formats

 Content/Topic 1: Identification of different data formats

Data file formats

A file format is a standard way that information is encoded for storage in a computer file. It

specifies how bits are used to encode information in a digital storage medium.

There are two different ways of storing data in a file – as text or binary data. Text-based file

formats, such as XML and HTML, store data as plain text, which means the file content can be

viewed in a text editor. Binary files, on the other hand, can only be opened with a program that

recognizes the specific file format. DATABASE files can be exported or imported in different

formats.

A data file could be any file, but for the purpose of this list, we've listed the most common data

files that relate to data used for a database, importing, and exporting.

DATABASE file Description

.sql
Database file. A SQL file is a file written in SQL (Structured Query Language). It

contains SQL code used to modify the contents of a relational database.

.CSV

Short for “Comma separated value”. Files ending in the CSV file extension are

generally used to exchange data. CSV files are designed to be a way to easily

exportdata and import it into other programs. Files in the CSV format can be

imported to and exported from programs that store data in tables, such as

Microsoft Excel or Open Office

.xls Microsoft Excel file

.xlsx Microsoft Excel Open XML spreadsheet file

Page 89 of 146

.BAK

Backup file. A BAK file is a backup of another document or file, commonly

created automatically by software programs or by the operating system. It

typically contains a copy of the original file and can be restored to the original

by replacing the ".bak" extension with the original extension. When a program

is about to overwrite an existing file (for example, when the user saves the

document they are working on), the program may first make a copy of the

existing file, with .bak appended to the filename.

NOTE: THE FOLLOWING PART IS PRACTICAL

Learning Outcome 3.2: Correlate data between external format and database

 Content/Topic1:Analyzing data types compatibility

A. Numeric

The SQL data types that store numeric data are NUMBER, BINARY_FLOAT, and

BINARY_DOUBLE. The NUMBER data type stores real numbers in either a fixed-point or

floating-point format. NUMBER offers up to 38 decimal digits of precision. In a NUMBER

column, you can store positive and negative numbers of magnitude 1 x 10-130 through 9.99

x10 125, and 0.

 A common challenge for database modellers is deciding which data type is the best fit for a

particular column. It is a problem which involves consideration of both the properties and

the scale of the data that will be stored, and in no case is this more evident than when

handling numeric values because of the large variety of alternatives that most relational

databases provide for their storage.

B. Date

 The DATE type represents a logical calendar date, independent of time zone. A DATE value

does not represent a specific 24-hour time period. Rather, a given DATE value represents a

different 24-hour period when interpreted in different time zones, and may represent a

shorter or longer day during Daylight Savings Time transitions.

C. String

Page 90 of 146

Page 91 of 146

Conclusion

The types of data analysis methods are just a part of the whole data management picture that also

includes data architecture and modeling, data collection tools, data collection methods,

warehousing, data visualization types, data security, data quality metrics and management, data

mapping and integration, business intelligence, etc.

What type of data analysis to use? No single data analysis method or technique can be defined as

the best technique for data mining. All of them have their role, meaning, advantages, and

disadvantages.

The selection of methods depends on the particular problem and your data set. Data may be your

most valuable tool. So, choosing the right methods of data analysis might be a crucial point for your

overall business development.

 Content/Topic2: Analyzing size of data

Total size of the database and the sizes of the database tables

As part of a web application I have created for a client, I have been working on efficient analysis of

somewhat large datasets for some time now. This analysis often involves complexing grouping,

clustering and value aggregation. SQL and PostgreSQL aggregate functions in particular come in

quite handy when dealing with that kind of challenge.

While RDBMS and SQL certainly are useful already just for keeping and retrieving data, i.e. for

running your usual CRUD operation, those tools really shine when it comes to efficiently gaining

insight from raw data in a scalable manner. Sure, Microsoft Excel or Google Sheets also provide

features for analyzing data and particularly for graphically displaying the results visually using

diagrams and plots. In fact, that used to be their raison d’être. However, scaling an Excel

spreadsheet to more than a few thousand rows – let alone millions – isn’t exactly recommendable

or even possible anymore once the dataset grows large enough.

Dealing with large datasets in a scalable manner – that’s what relational database systems were

invented for in the first place so it’s only natural to use them for large scale data analysis and data

mining, too. Apart from quite common and well-known aggregation functions such as COUNT, SUM

or AVG, PostgreSQL also provides more sophisticated aggregation functions for calculating

statistical measures, for example:

 var_samp: Variance

 stddev_pop, stddev_samp: Standard deviation

Analyzing Big Data with SQL Objective: To use SQL to query a Teradata Database. Use SELECT,

FROM,WHERE and other clauses to derive information from one or multiple tables. About

Teradata Teradata, the flagship data warehousing DBMS software, is widely regarded by

customers to be the best at analyzing large amounts of data and superior in its ability to

grow in size without compromising performance. Teradata's patented parallel architecture

provides the foundation for the unique ability to support a wide range of data warehousing

functions, ranging from reports to ad hoc queries to data mining, all from a single data

warehouse that integrates data from across the enterprise. The Teradata platform offers

proven scalability along with fast and easy data movement. Teradata is committed to the

highest levels of reliability and availability by providing capabilities for automated

management and operation. Complex queries are executed quickly due to the high level of

http://intellspot.com/data-collection-tools/
http://www.intellspot.com/data-collection-methods-advantages/
http://intellspot.com/data-visualization-types/
http://intellspot.com/data-quality-metrics/
http://intellspot.com/data-mapping-tools/
http://intellspot.com/data-mapping-tools/
https://www.postgresql.org/docs/9.5/static/functions-aggregate.html
https://en.wikipedia.org/wiki/Relational_database_management_system
https://products.office.com/en-us/excel
https://www.google.com/sheets/about/
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Standard_deviation

Page 92 of 146

parallelism built into the Teradata system. Teradata provides industrial-strength database

power optimized for data warehouse and decision support system

Learning Outcome 3.3: Execute import of data from external source

 Importing and Exporting Data

Earlier in this chapter you learned how to create a table from scratch. But that is not always

necessary if your data already exists. For example, if you are converting an old Paradox table (or

any other of the many supported formats) to Advantage, you can import your existing data,

creating an ADT table with a structure based on the existing table. The newly created table will be

populated with the data from the existing table.

Data can go the other way, as well. The Advantage Data Architect permits you to export data to

a wide variety of formats. This permits you to share your data with other applications. For example,

you can export data from an Advantage table to an Excel spreadsheet, permitting you to use the

business graphing capabilities of Excel to create a pie chart, a bar chart, or whatever kind of chart is

suitable for your data. Alternatively, you can export your data in HTML format, permitting you to

easily publish it to a World Wide Web site.

The following sections describe how to import and export data using the Advantage Data

Architect. This discussion begins with importing.

Importing Data into ADS Tables

When you import data, you are making a copy of an existing data source, placing that copy into

one or more ADT tables. Whether you get one or more tables depends on what you import. If you

are importing a Microsoft Access database (an MDB file), you will end up with one ADT table for

each table in the Access database. By comparison, if you are importing from Paradox or dBase

tables, you will get one ADT table for each Paradox or dBase table you select to import.

The Advantage Data Architect permits you to import data using a wide variety of data access

mechanisms. One of the most flexible involves OLE DB/ADO (ActiveX Data Objects), which you can

use if you have the necessary OLE DB provider. This solution is flexible since most Windows

databases have an OLE DB provider. There are also mechanisms to import Paradox tables, xBASE

tables, and Pervasive SQL (Btrieve) tables, and to import both fixed-length and CSV (comma-

separated value) text files.

 NOTE: If you have an ODBC driver for a data format that you want to import, you can import that

data using Microsoft's OLE DB Provider for ODBC.

Before you import data, you should decide whether you want to import your data as free tables

or into a data dictionary. If you want to import your data into a new data dictionary, you must

create that data dictionary before you start.

Page 93 of 146

You initiate the import process by selecting Tools Import Data from the Advantage Data

Architect's main menu. The Advantage Data Architect responds by displaying the Advantage Data

Import Wizard dialog box shown in Figure below.

Figure : The Advantage Data Import Wizard

The Advantage Data Import Wizard walks you through the process of importing data. It begins by

asking you to select which import mechanism you want to use to import the data. Use the Import

Data Type combo box to select which of the available import options you want to use.

Depending on the data import mechanism you choose, you are provided with a means of

identifying the data you want to import. For example, if you select to use an OLE DB Provider (the

OLE DB/ADO Data Source option), the Advantage Data Import Wizard provides you with a field to

enter a connection string, along with a Build button that invokes the Data Link Properties Editor,

which assists you with the building of the connection string.

By comparison, if you select to import Paradox/dBase data, you will be asked to select the file (or

files) that you want to import. A Browse button permits you to select the directory and table you

want to import. To import more than one table using the Browse button, use the browser to select

a single table from the directory from which you want to import, and click OK. Then, in File Name

field of the Advantage Data Import Wizard, change that table name to a wildcard pattern, such as

*.db, to indicate the multiple tables that you want to import.

Once you select the mechanism you want to use to import the data, indicate the data you want

to import (through connection strings, BDE aliases, filename wildcard patterns, and so forth), and

specify any other options presented by the Advantage Data Import Wizard, click the Next button to

advance to the Select Destination page of the Advantage Data Import Wizard, shown in Figure

below.

Page 94 of 146

Figure : The Select Destination page of the Advantage Data Import Wizard

You use the Select Destination page to select the connection to which you want to import the

tables. If you select a free table connection, your ADT tables will be imported as free tables. Select a

data dictionary connection to bind the imported tables to an existing data dictionary. If you select a

data dictionary connection as the destination, the Advantage Data Import Wizard will prompt you

for a user name and a password that has create privileges for the data dictionary.

The Select Destination page of the Advantage Data Import Wizard also provides you with a

button to create a new connection. Use this button to create a new free table or create a new

connection to an existing data dictionary. Once you select the connection to which you want to

import your data, click Finish to begin importing (or click Cancel to exit without importing the

selected data).

During importation, the Advantage Data Import Wizard displays its progress by listing the

operations it is performing. In some cases, when importation is complete the Advantage Data

Import Wizard will display a dialog box with information about the imported data. After accepting

this dialog box, if displayed, the Advantage Data Import Wizard will look something like that in

Figure below. Here you will find the complete log of the importation. This log appears in a memo

field. If you like, you can select the contents of this memo field, copy it to the clipboard, and then

paste it into a text document that you then save. This is useful if you want to maintain a record of

the importation results.

Page 95 of 146

Figure: When importation is complete, a record of the importation is displayed

Exporting Data from ADS Tables

The Advantage Data Architect permits you to export data from Advantage tables using either the

Table Browser or the SQL Utility. Using the Table Browser, you can either export the entire table's

contents, or you can set either a scope (an index-based range) or a filter (a Boolean selection

expression) to export only a subset of records from the table. Using the SQL Utility, you can execute

a SQL SELECT statement to select some or all records and columns from a table (or view or stored

procedure), and then export only the selected data. Only by using the SQL Utility can you export

fewer than all columns of your data.

NOTE: While the preceding description is technically true, when you open a view, the results are

displayed in the Table Browser. Consequently, if the view retrieves fewer than all columns of a table,

the Table Browser for a view will export only that subset of columns. See Chapter 6 for information

on views.

Whether you use the Table Browser or the SQL Utility, there are three general categories of

export options. The first is to export your data to another, new ADT table, and the second is to

export your data to an existing ADT table. If you want to export to an existing ADT table, the

existing table must have a structure that is compatible with the table from which you are exporting.

These first two export options make it easy to copy and append data, but are not necessarily useful

if you want to make your data available to other programs.

The third export option is to export to a non-ADS format. This export option permits you to

export your data into a variety of useful formats, including Excel, comma-delimited text, tab-

delimited text, HTML, and MS Word, among others. Most applications that you might want to use

Page 96 of 146

your data with will likely support at least one of the export format options provided for by this

feature.

Use the following steps to demonstrate the export feature of the Advantage Data Architect:

If the FreeTableConnection connection is not open, click the '+' symbol next to this connection. This

will also make this connection the active connection. If it is already open, make sure it is the

current connection. (The current connection name appears in the Active Connection section of

the toolbar of the Advantage Data Architect.) If you have more than one connected

connection, click the FreeTableConnection to make it the active connection.

Select Tools | SQL Utility from the Advantage Data Architect main menu.

Enter the following SQL statement into the SQL editor (the multiline edit at the top of the SQL

Utility):

SELECT "First Name", "Last Name", "Date Account Opened"

 FROM CUST WHERE "Customer ID" = 12688

If there are already other SQL statements in the SQL Editor, highlight the preceding SQL statement.

When you highlight one or more SQL statements in the SQL Editor of the SQL Utility, only those

highlighted statements are executed. Otherwise, all SQL statements in the SQL Editor are

executed.

Click the Execute button in the SQL Utility's toolbar. This is the button that displays the green, right-

arrow icon. (If, after the query's execution, there are no records in the returned result set,

check your SQL statement. If it is correct, verify that the Customer ID in the first record of the

CUST table matches the WHERE clause of your SQL statement. Make corrections and execute

the query again.)

Right-click in the Results pane (the area at the bottom of the SQL Utility that displays the query

results when the Data tab at the bottom is selected) to display a popup menu with the

following three options for exporting the result set: Export to New Table, Export to Existing

Table, Export to HTML, Excel, …, Select Export to HTML, Excel,…. The SQL Utility shown in

Figure below is displayed.

Page 97 of 146

Figure : The Export Items dialog box

Select Comma-Delimited Text (CSV) from the Export Format dropdown list, and set the Export to

File option. Uncheck the options under Options. Click OK.

You will now see a browser window that you can use to provide the filename and directory to

which to export the data. Use this browser to navigate to the directory where your CUST.ADT

table is stored, and enter CUST.CSV for the File Name. Click Save.

Now use Windows Notepad, or any other text file viewer, to open the CUST.CSV file you just

exported. This file should look like that shown here:

Close this window or viewer. Also, close the SQL Utility window when you are done.

The preceding example demonstrated how to export specific rows and columns from an existing

Advantage table using the SQL Utility. To export using the Table Browser, set a scope or a filter if

you want to export fewer than all rows of data, and then right-click the Table Browser. Select the

export option that you want from the context menu, and then proceed as you did with the SQL

Utility.

 Content/Topic 1: Execution of Import of data from external source

A. Import .XLS file

The quickest way to get your Excel file into SQL is by using the import wizard:

1. Open SSMS (Sql Server Management Studio) and connect to the database where you want to

import your file into.

Page 98 of 146

2. Import Data: in SSMS in Object Explorer under 'Databases' right-click the destination database,

select Tasks, Import Data. An import wizard will pop up (you can usually just click 'Next' on the

first screen).

3. The next window is 'Choose a Data Source', select Excel:

 In the 'Data Source' dropdown list select Microsoft Excel (this option should appear

automatically if you have excel installed).

 Click the 'Browse' button to select the path to the Excel file you want to import.

 Select the version of the excel file (97-2003 is usually fine for files with a .XLS extension, or

use 2007 for newer files with a .XLSX extension)

 Tick the 'First Row has headers' checkbox if your excel file contains headers.

 Click next.

https://i.stack.imgur.com/JBqXl.png

Page 99 of 146

4. On the 'Choose a Destination' screen, select destination database:

 Select the 'Server name', Authentication (typically your sql username & password) and

select a Database as destination. Click Next.

https://i.stack.imgur.com/0VXI3.png

Page 100 of 146

5. On the 'Specify Table Copy or Query' window:

 For simplicity just select 'Copy data from one or more tables or views', click Next.

6. 'Select Source Tables:' choose the worksheet(s) from your Excel file and specify a destination

table for each worksheet. If you don't have a table yet the wizard will very kindly create a new

table that matches all the columns from your spreadsheet. Click Next.

https://i.stack.imgur.com/tLC7a.png

Page 101 of 146

7. Click Finish.

B. Import .CSV file

How to Import a CSV File into Your Database with SQL Server Management Studio Bulk copy of

information manually to the SQL Server Management Studio is time-consuming and easy to

make errors. There are ways in SQL Server to import data from CSV formatted file to the

database. The approaches getting the data into the database are built-in the SQL Server

Management Studio. No additional installation of software is required. We have worked out

several tutorials to teach our customers to use SQL Server Management Studio to connect to

SQL Server and optimize SQL databases. Today, we begin to explain the steps by steps on how

to import CSV file using SQL Server Management Studio.

 Steps to Import CSV File Using SQL Server Management Studio

In order to import CSV file using SQL Server Management Studio, you need to create a sample

table in the SQL Server Management Studio. The table is important for the import of the CSV

file. The screen shot below only focuses on particular columns of the table.

https://www.bisend.com/blog/connect-to-sql-server-via-management-studio
https://www.bisend.com/blog/connect-to-sql-server-via-management-studio
https://www.bisend.com/blog/optimize-sql-databases
https://i.stack.imgur.com/xnzv1.png

Page 102 of 146

Step 1

At the start, please open up the SQL Server Management Studio. Log into the target datab ase,

and right click the database. Please note that you shall click on the entire database, rather than

a particular table. From the Object Explorer, you shall point to the button of Tasks, and find the

Import Data.

Step 2

Please note that the Wizard introduction page might be popped up. When you see such

introduction page, please safely click on next. This is the screen prompting the selection of a

data source. From the screen, you shall select the Flat File source from the Dropdown box, and

the Browse button.

Page 103 of 146

Step 3

From the Windows Explorer, you shall select the designated CSV file. In order to ensure you

select the correct file type, it is the best practice to select the file type as CSV, but not TXT.

Therefore, only CSV file type shall be displayed.

Page 104 of 146

Step 4

After the selection of the CSV file, please allocate some time to configure how to import the

data into the database before you click the Next > button. Note that you shall ensure the First

Data Row checked, because the file shall then contain the required column names. From the

following image, you shall see the Column Names from the SQL Server Management Studio

shall try their best to important header row instead.

Page 105 of 146

Step 5

After the review of columns, you shall examine more advanced options. The review is important

before you completely import the CSV file. From the image below, by default, the SQL Server

set the length of each string to be 50.

Page 106 of 146

Step 6

If you have string that is larger than 50, please request the SQL Server to inspect all column s in

the file. The inspection can be done by clicking on the Suggest Types button. SQL Server shall be

instructed to examine only the first 100 rows, giving suggested types of each column. Error shall

be pointed out during the inspection process. Depending on the file size, you can select to

inspect the whole file or just selected the fields.

Page 107 of 146

Step 7

You will be prompted to the Preview section from the Data Source page. That will be the last

time to examine columns again.

Page 108 of 146

Step 8

After your review on the import preview, you shall select your destination database.

Page 109 of 146

Step 9

In this step, you shall select your destination database. The SQL Server normally selects the

desired table on behalf of you. If it is not the case, please create your table. If you would like to

select a different table, please click on the destination column for action.

Page 110 of 146

Step 10

You are required to prompt to the option in order to save as an SSIS package. You can also leave

the option unchecked as is. Please click next.

Page 111 of 146

Step 11

Finally, you will be prompted to the verification screen. If you are fine with everything, please

run the Import by click the Finish.

Page 112 of 146

C. Import .XLSX

Importing an Excel Spreadsheet into a SQL Server Database

Introduction

We often have to perform data integration in SQL Server, with different data sources such as ".txt"

files (tabular text or with separator character), ".csv" files or ".xls" (Excel) files.

 It is always not possible to create a SSIS package to do this data import, a useful alternative is to

use OPENROWSET method for importing data.

 In this article, we will use data import from Excel files (.xls e .xlsx).

Page 113 of 146

Building the Environment for Testing

So that we see the data import process steps from an Excel file to a table from database, we need:

Create an Excel file to import sample;

 Configure Windows Server, installing the necessary components;

 Configure the necessary permissions to the SQL instance that we need to obtain data files.

Let's prepare environment for data import!

Creating an Excel File to test

In this step, we will create an Excel file sample with just a few rows to demo.

Add a header row, to explicitly define the data: "ID", "Item Name" and "Date Created".

The data sequences are only to facilitate the visualization of the content that is being manipulated.

See this Excel file in the image below (click to enlarge)

Installing the necessary components in Windows Server

To get the data through a query inside SQL Server, use an OLE DB Data Provider.

Most files can now use the Microsoft.ACE.OLEDB.12.0 Data Provider that can be obtained free

through Data Connectivity Components.

This package will provide all ODBC and OLEDB drivers for data manipulation, as follow below:

 File Type (extension) Extended Properties

 Excel 97-2003 Workbook (.xls) Excel 8.0

 Excel 2007-2010 Workbook (.xlsx) Excel 12.0 XML

http://www.microsoft.com/en-us/download/details.aspx?id=13255
http://social.technet.microsoft.com/wiki/cfs-file.ashx/__key/communityserver-wikis-components-files/00-00-00-00-05/5287.passo1.jpg

Page 114 of 146

 Excel 2007-2010 Macro-enabled workbook (.xlsm) Excel 12.0 Macro

 Excel 2007-2010 Non-XML binary workbook (.xlsb) Excel 12.0

There are two versions of this package: "AccessDatabaseEngine.exe" for x86 platform and other

"AccessDatabaseEngine_x64.exe" for x64 platform.

The minimum system requirements for this installation can be obtained in the same download

 package page.

If you are installing the x 86 packages you must ensure that your user is allowed access to the

Temporary directory of your Windows OS.

To know what your Temporary directory open the "Control Panel", click "Advanced System

Settings" option. A window will open, select the "Advanced" tab and click the "Environment

Variables" button.

A new window will open with your environment variables, including "TEMP" and "TMP" variables,

indicating your Temporary directory.

See this windows in the image below (click to enlarge)

So if your operating system is Windows 32-bit (x86) is necessary to include read and write access to

the user of your SQL Server instance.

It's important to remember that the user of your SQL Server instance must be a local user or the

default "Local System" account to grant this access.

See this window Service Properties in the image below

http://www.microsoft.com/en-us/download/details.aspx?id=13255&e6b34bbe-475b-1abd-2c51-b5034bcdd6d2=True
http://www.microsoft.com/en-us/download/details.aspx?id=13255&e6b34bbe-475b-1abd-2c51-b5034bcdd6d2=True
http://www.microsoft.com/en-us/download/details.aspx?id=13255&e6b34bbe-475b-1abd-2c51-b5034bcdd6d2=True
http://social.technet.microsoft.com/wiki/cfs-file.ashx/__key/communityserver-wikis-components-files/00-00-00-00-05/5706.passo2.jpg

Page 115 of 146

Enabling SQL Server Instance to Read File

The settings and permissions to execute a query external data has some details that should be

performed to be able to get the data from an Excel files (.xls ou .xlsx) and also other formats.

The execution of distributed queries as OPENROWSET is only possible when the SQL Server instance

has the Ad Hoc Distributed Queries configuration enabled. By default, every SQL Server instance

maintains this permission denied.

 Note

The Advanced Settings should only be changed by an experienced professional or a certified

professional in SQL Server. It's important to note not use these commands in Production Databases

without previous analysis. We recommend you run all tests in an isolated environment, at your own

risk.

To enable this feature just use the sp_configure system stored procedure in your SQL instance to

display its Advanced Settings in show advanced options parameter and soon to follow, enable

the Ad Hoc Distributed Queries setting to enabling the use of distributed queries.

http://social.technet.microsoft.com/wiki/cfs-file.ashx/__key/communityserver-wikis-components-files/00-00-00-00-05/4380.passo3.jpg

Page 116 of 146

USE [master]

GO

--CONFIGURING SQL INSTANCE TO ACCEPT ADVANCED OPTIONS

EXEC sp_configure 'show advanced options', 1

RECONFIGURE

GO

--ENABLING USE OF DISTRIBUTED QUERIES

EXEC sp_configure 'Ad Hoc Distributed Queries', 1

RECONFIGURE

GO

These changes in the advanced settings only take effect after the execution of

the RECONFIGURE command.

To get permission granted to use the Data Provider through sp_MSset_oledb_prop system stored

procedure to link Microsoft.ACE.OLEDB.12.0 in SQL Server using Allow In Process parameter so we

can use the resources of the Data Provider and also allow the use of dynamic parameters in queries

through of Dynamic Parameters parameter for our queries can use T-SQL clauses.

USE [master]

GO

--ADD DRIVERS IN SQL INSTANCE

EXEC master.dbo.sp_MSset_oledb_prop N'Microsoft.ACE.OLEDB.12.0', N'AllowInProcess', 1

GO

EXEC master.dbo.sp_MSset_oledb_prop N'Microsoft.ACE.OLEDB.12.0', N'DynamicParameters', 1

GO

Page 117 of 146

See this output SQL script in the image below

After setting up your SQL instance to use the Microsoft.ACE.OLEDB.12.0 Data Provider and make

the appropriate access permissions, we can implement the distributed queries of other data

sources, in this case to Excel files.

Querying and Importing the Spreadsheet

As this demo is for Excel files (.xls) we will perform a query using an OPENROWSET method with the

Excel test file that was created earlier in this article.

We use some parameters for this method to be able to data query:

 Data Provider - In this case, using Microsoft.ACE.OLEDB.12.0

http://social.technet.microsoft.com/wiki/cfs-file.ashx/__key/communityserver-wikis-components-files/00-00-00-00-05/0333.passo1.jpg

Page 118 of 146

 BULK Options - File Version; Where it's stored; Header (HDR); Import Mode (IMEX)

 Query - T-SQL statement with or without clauses to data filter and process.

--CONSULTING A SPREADSHEET

SELECT * FROM OPENROWSET('Microsoft.ACE.OLEDB.12.0',

'Excel 12.0; Database=C:\Microsoft\Test.xls; HDR=YES; IMEX=1',

'SELECT * FROM [Plan1$]')

GO

See this output SQL script in the image below

To data group and perform other tasks for data manipulation, the ideal is always load the data into

the database. You can insert data into an existing table using the INSERT statement or you can

create a table through of INTO command in SELECT statement.

--CONSULTING A SPREADSHEET

SELECT *

INTO TB_EXAMPLE

FROM OPENROWSET('Microsoft.ACE.OLEDB.12.0',

'Excel 12.0; Database=C:\Microsoft\Test.xls; HDR=YES; IMEX=1',

http://social.technet.microsoft.com/wiki/cfs-file.ashx/__key/communityserver-wikis-components-files/00-00-00-00-05/7271.passo1.jpg

Page 119 of 146

'SELECT * FROM [Plan1$]')

GO

SELECT * FROM TB_EXAMPLE

GO

See this output SQL script in the image below

It's also important to check if the SQL Server Service user has access in Windows directory where

Excel files are stored.

http://social.technet.microsoft.com/wiki/cfs-file.ashx/__key/communityserver-wikis-components-files/00-00-00-00-05/8475.passo4.jpg

Page 120 of 146

Conclusion

Have the possibility to use an alternative resource for importing data with T-SQL command is very

useful, especially when we have to manipulate files in proprietary formats, as for .xlsx files where

it's necessary to use the Data Provider appropriate to obtain the data correctly and with ease use.

It's important to watch out that only users that have actually need to manipulate these files can use

these resources, while minimizing the vulnerability of their environment through permission in your

SQL Server.

D. Import .BAK file

How to import .bak file to a database in SQL server?

1. Connect to a server you want to store your DB

2. Right-click Database

3. Click Restore

4. Choose the Device radio button under the source section

5. Click Add.

6. Navigate to the path where your .bak file is stored, select it and click OK

7. Enter the destination of your DB

8. Enter the name by which you want to store your DB

9. Click OK

Restore (Import) database from .bak file in SQL server (With &

without scripts)

If you have started working on SQL server (any version), at some point you may need to transfer

your database from one pc to another after taking backup of sql database.

Usually we restore database either using scripts or using .bak file of the database, executing is

script is quite easy, just open a 'New Query' window in your SQL server version and copy paste

your script which may have data or just tables schema (as selected by your while creating scripts),

so in this post I will explain you about restoring the database using .bak in SQL server, step by step

with images.

Step 1: I suppose you already have the .bak file of the database which you want to restore. If you

don't have it, create .bak file using sql server or just download demo database from this

link https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks

Step 2: Move your .bak in a drive/folder which can be accessed by anyone or you can say which

don't require any special rights.

https://qawithexperts.com/article/sql/how-to-back-up-sql-server-database/41
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks

Page 121 of 146

Step 3: Open your SQL server(Express version or any other version I am using Express

version), connect with your sql server for which you want to restore database, right click on the

"Databases" and click "Restore Database"

Step 4: Now Select the "Device" radio button and then clikc on browse(...) button to locate the

.bak file stored in your hard drive.

Step 5: As soon as you will click browser(...) but, a dialog box like below will appear, click "Add"

inside that dialog box

Page 122 of 146

Step 6: Locate the .bak file, in this example it's AdventureWorks2012.bak stored in D:\, after

selecting the file, click "OK"

Step 7: You will see as image below, Click "Ok"

Page 123 of 146

Step 8: We are all done now, database file (.bak) is located and now just need to Click "OK", rest

SQL server will handle, so click on "OK" & wait for few seconds until SQL server restores database.

Page 124 of 146

Once done, you will see a pop-up message which shows success message.

That's it we are done, you can see the database is restored succesffuly.

Another Method in SQL Server to restore database from bak file using script

In the above method to restore database in sql server is to restore database from bak file using

script, so suppose here we have .bak file in D:\, we can run script as below

Using T-SQL

 Connect to the Database Engine.

 From the Standard bar, click New Query.

 In the RESTORE statement, specify a logical or physical backup device to use for the backup

operation. This example restores from a disk file that has the physical name

RESTORE DATABASE AdventureWorks2012 FROM DISK = 'D:\AdventureWorks2012.BAK'

GO

The above script will restore the database using the specified file. If the database already exists it

will overwrite the files. If the database does not exist it will create the database and restore the

files to same location specified in the backup.

Page 125 of 146

Note: You might get error

Logical file 'AdventureWorks' is not part of database 'AdventureWorks'. Use RESTORE

FILELISTONLY to list the logical file names.

OR

System.Data.SqlClient.SqlError: Directory lookup for the file "C:\PROGRAM FILES\MICROSOFT SQL

SERVER\MSSQL.1\MSSQL\DATA\AdventureWorks.MDF" failed with the operating system error

3(The system cannot find the path specified.). (Microsoft.SqlServer.SmoExtended)

In this case, it means you are missing .ldf/.mdf files of the above backup, to get it, you need to run

the below command

RESTORE FILELISTONLY

 FROM DISK = 'D:\AdventureWorks2012.BAK'

Once you will execute the above command, you will get location of .mdf/.ldf like "C:\Program

Files\Microsoft SQL

Server\MSSQL13.SQLEXPRESS\MSSQL\DATA\AdventureWorks2012_Data.mdf" with logical

name "AdventureWorks2012_Data", use it in below query to restore database.

RESTORE DATABASE AdventureWorks2012 FROM DISK = N'E:\AdventureWorks2012.bak' WITH

FILE = 1,

 MOVE N’AdventureWorks2016_Data' TO N'C:\Program Files\Microsoft SQL

Server\MSSQL13.SQLEXPRESS\MSSQL\DATA\AdventureWorks2012_Data.mdf',

MOVE N'AdventureWorks2016_Log' TO N'C:\Program Files\Microsoft SQL

Server\MSSQL13.SQLEXPRESS\MSSQL\DATA\AdventureWorks2012_Log.ldf',

NOUNLOAD, REPLACE, NOUNLOAD, STATS = 5

GO

Restore a full backup allowing additional restores such as a differential or transaction log backup

(NORECOVERY)

The NORECOVERY option leaves the database in a restoring state after the restore has completed.

This allows you to restore additional files to get the database more current. By default this option

is turned off.

RESTORE DATABASE AdventureWorks2012 FROM DISK = 'D:\AdventureWorks2012.BAK' WITH

NORECOVERY

GO

Page 126 of 146

Restoring a differential database backup

This example restores a database and differential database backup of the MyAdvWorks database.

-- Assume the database is lost, and restore full database,

-- specifying the original full database backup and NORECOVERY,

-- which allows subsequent restore operations to proceed.

RESTORE DATABASE MyAdvWorks

 FROM MyAdvWorks_1

 WITH NORECOVERY;

GO

-- Now restore the differential database backup, the second backup on

-- the MyAdvWorks_1 backup device.

RESTORE DATABASE MyAdvWorks

 FROM MyAdvWorks_1

 WITH FILE = 2,

 RECOVERY;

GO

Learning Outcome 3.4: Execute export of data to external source

 Content/Topic1: Execution of export to external format

A. Export to .xlsx format

How to export SQL table to Excel

This article shows three ways of how to move your data from SQL Server table or query to Excel or

CSV file.

http://sqlbak.com/blog/wp-content/uploads/2014/02/export-3.png

Page 127 of 146

Export SQL table to Excel using Sql to Excel Utility

Perhaps the simplest way to export SQL table to Excel is using Sql to Excel utility that actually

creates a CSV file that can be opened with Excel. It doesn’t require installation and everything you

need to do is to connect to your database, select a database and tables you want to export:

After you press “Generate CSV” it will create a separate CSV file for each table in the selected

folder.

Export SQL table to Excel using SSMS

There are two options for exporting the data from SQL Server Management Studio to a file.

https://sqlbak.com/blog/wp-content/uploads/2015/03/SQL-to-Excel.png

Page 128 of 146

1. Quick and easy

This option will work fast for you if you have both Excel and SSMS installed on the same machine.

After writing your simple query that outputs the contents of a table or a more complicated query,

you can save the result set into a .csv or .xls file. To do it you need to click on the top left rectangle

which will select all of the data resulted from your query.

Then right-click on the result set and select either Copy or Copy with Headers, which will also select

the column names, so you know what data represents in your column.

Then you simply go to an Excel file and paste the results into the spreadsheet.

https://sqlbak.com/blog/wp-content/uploads/2014/02/Export-SQL-table-to-Excel-using-SSMS-SSMS-Result.png
https://sqlbak.com/blog/wp-content/uploads/2014/02/Export-SQL-table-to-Excel-using-SSMS-SSMS-Copy-the-Result.png
https://sqlbak.com/blog/wp-content/uploads/2014/02/Export-SQL-table-to-Excel-using-SSMS-paste-the-result-to-Excel.png

Page 129 of 146

2. Safe and secure

This option works great when you don’t have access to both SQL Server Management Studio and

Excel on the same machine.

Open SSMS, right-click on a database and then click Tasks > Export Data.

After clicking Export Data, a new window will appear where you will have to select the database

from which you want to export data.

https://sqlbak.com/blog/wp-content/uploads/2015/03/SSMS-Export-Data.png

Page 130 of 146

After selecting the Data Source press Next and get to a window where you will have to select the

Destination.

You will see a drop-down menu, like the one you below where you will have to select Excel as the

destination type.

https://sqlbak.com/blog/wp-content/uploads/2014/02/Export-SQL-table-to-Excel-using-SSMS.png

Page 131 of 146

The next step would be to browse to the location of where the file will be created and specify its

name. Also, you need to select the version of Excel you want the file to be created for.

https://sqlbak.com/blog/wp-content/uploads/2015/03/SSMS-Export-Data-select-a-destination.png
https://sqlbak.com/blog/wp-content/uploads/2015/03/SSMS-Export-Data-specify-a-path.png

Page 132 of 146

Then press Next and get to the next Wizard window where you have the option of either running a

custom query to output custom data from your tables or just select all data from more tables.

Choose whatever option works best for you, but for now, let’s just say you want to export all data

from a specific table and thus we will choose the first option.

The next window you will see in this case asks you to select the table or tables you want to fetch

data from. Select the table you want to export data from and either press Next or Edit Mappings.

https://sqlbak.com/blog/wp-content/uploads/2015/03/SSMS-Export-Data-specify-tables.png

Page 133 of 146

Press Next to get to the next step of the wizard. You will get to a window where you have the

option of running the query “Right Now” and also create an SSIS package.

https://sqlbak.com/blog/wp-content/uploads/2015/03/SSMS-Export-Data-select-a-table.png

Page 134 of 146

After you’ve selected the options, press Next. You will get to the last stage where you will have to

press Finish.

This will create a file in the file path you specified and with the file name you have selected on

previous steps. If you open the file, you will see that the data is in that specific format.

B. Export to .PDF format

How To Export Database Data in PDF | Word | Excel And Image File | RDLC Report in MVC

Click on the following link to watch the video of exporting SQL Database table to .PDF file

https://www.youtube.com/watch?v=VcZGQq412f4

https://www.youtube.com/watch?v=VcZGQq412f4
https://sqlbak.com/blog/wp-content/uploads/2015/03/SSMS-Export-Data-save-and-run.png
https://sqlbak.com/blog/wp-content/uploads/2014/02/Export-SQL-table-to-Excel-using-SSMS-paste-the-result-to-Excel.png

Page 135 of 146

C. Export to .CSV format

How to Export Query Results to CSV in SQL Server

In this short guide, I’ll show you 2 methods to export query results to CSV in SQL Server

Management Studio:

1. The quick method for smaller number of records

2. The complete method for larger datasets

I’ll also demonstrate how to include the column headers when exporting your results.

Method 1: The quick method to export query results to CSV in SQL Server

To start, run your query in order to get the query results.

For example, I ran a simple query, and got the following table with a small number of records:

To quickly export the query results, select all the records in your table (e.g., by picking any cell on

the grid, and then using the keyboard combination of Ctrl + A):

After selecting all your records, right-click on any cell on the grid, and then select ‘Copy with

Headers‘ (or simply select ‘Copy’ if you don’t want to include the headers):

https://datatofish.com/table-sql-server/

Page 136 of 146

Open a blank CSV file, and then paste the results:

The above method can be useful for smaller number of records. However, if you’re dealing with

much larger datasets, you may consider to use the second method below.

Method 2: Export query results for larger datasets

Using the same example, you can export the query results to a CSV file by right-clicking on any cell

on the grid, and then selecting ‘Save Results As…‘

Next, type a name for your CSV file (for example, ‘query_results’), and then click on Save:

Page 137 of 146

Your CSV file will be saved at the location that you specified:

And if you open the CSV file, you’ll see the exported results (without the column headers):

Page 138 of 146

You may follow the steps below in case you need to include the column headers when exporting

your CSV file in SQL Server.

How to include the column headers when exporting query results to CSV in SQL Server

In order to include your column headers, go to Tools, and then select Options…

Then, click on Query Results >> SQL Server >> Results to Grid:

Check the option to ‘Include column headers when copying or saving the results‘and then click

on OK:

Page 139 of 146

You’ll now need to restart SQL Server in order for the changes to be applied.

Then, rerun your query to get the query results:

Right-click on any cell on the grid itself, and then select ‘Save Results As…‘

Type a name for your CSV file, and then press on Save:

Page 140 of 146

Your new CSV would now contain the column headers going forward:

D. Export to .SQL format

Export data to an earlier SQL Server version

Export Problem

I have data in a SQL Server database that I need to get to an older version of SQL Server. I tried

the backup and restore method, but received an error indicating that this wasn't allowed. I also

tried to detach and attach the database, but that operation failed too. I understand that typical

methods I use to move the database around don't work when I have to work with an earlier SQL

Server version. What can I do to get the data out? This is a simple database and I want to spend a

minimal amount of effort. Check out this tip to learn more.

https://www.mssqltips.com/sql-server-tip-category/8/backup-and-recovery/
https://www.mssqltips.com/sqlservertip/2675/why-can't-i-restore-a-database-to-an-older-version-of-sql-server?/
https://www.mssqltips.com/sqlservertip/2528/database-attach-failure-in-sql-server-2008-r2/

Page 141 of 146

Solution

If you're dealing with a relatively simple database, then the easiest way to do this is with the SQL

Server Import and Export Wizard. This wizard basically creates a small, simple SSIS package to

move tables of data from one database to another. In order to access it, open SQL Server

Management Studio then navigate to the database you want to export, right-click on it, choose

'Tasks', and then choose to 'Export Data':

This starts the wizard. The first thing the wizard is going to do is prompt you for the source, which

will default to the database currently selected in SSMS. In the screenshot below I'm moving data

from a SQL Server 2008 data source, hence the use of the Native Client 10.0.

https://www.mssqltips.com/sql-server-tip-category/137/ssis-importexport-wizard/
https://www.mssqltips.com/sql-server-tip-category/137/ssis-importexport-wizard/
https://www.mssqltips.com/sql-server-tip-category/52/sql-server-management-studio/
https://www.mssqltips.com/sql-server-tip-category/52/sql-server-management-studio/

Page 142 of 146

Then you'll need to select the destination.

Since I'm exporting to a SQL Server 2005 server, I use the SQL Server Native Client, because I

happen to have it installed on this system. I've highlighted the 'New' button. If the database doesn't

exist at the destination, you can use this button to go ahead and create it before continuing. It'll

bring up a dialog window to perform the creation.

Page 143 of 146

You will need to have appropriate permissions to create the database. With the source and

destinations selected, the next step is to choose how to move the data.

If you choose the first option, you're presented with a GUI interface where you're allowed to mark

the tables and view you want to copy. This is self-explanatory and you can change the mappings as

you need to. The next interface that requires some thought is what to do with the package that's

being generated:

Page 144 of 146

If you need to do this data export more than once, choose to save the SSIS package. You can edit it

later as needed. Then allow it to run. Sometimes you'll see a warning or an error.

You'll want to investigate why these were reported. Click the 'Report' button and select 'View

Report' to determine what the issue(s) was during the data export.

In this case, here is the cause of the warning:

In my case, I just cared about the one-time data migration, so the fact that I couldn't get

performance counters isn't important.

Page 145 of 146

Re-Using the SSIS Package

Before you assume that you can re-use the package as is, be sure to review it in the Business

Intelligence Development Studio (the right BIDS version to correspond with the SQL Server that

created the package) and examine it first. For instance, the simple package I built using the wizard

has a step which does the following:

If I'm simply going to truncate the tables each time before I run the package, then I don't want the

step (or steps, as there are actually 2 in the package I created, to check everything) with the CREATE

TABLE statements. Therefore, examine the package and make the appropriate updates to be able

to re-use it as you need to.

You can watch videos for better understanding:

A. Export to .xlsx format

Click on the following link to watch the video of how to export to .xlsx format

https://www.youtube.com/watch?v=EYrCXZWcajg

B. Export to .PDF format

Export Mysql Database table to PDF file

Click on the following link to watch the video of exporting Mysql Database table to .PDF file

https://www.youtube.com/watch?v=QPaSAGn20XU

How To Export Database Data in PDF | Word | Excel And Image File | RDLC Report in MVC

Click on the following link to watch the video of exporting SQL Database table to .PDF file

https://www.youtube.com/watch?v=VcZGQq412f4

https://www.youtube.com/watch?v=EYrCXZWcajg
https://www.youtube.com/watch?v=QPaSAGn20XU
https://www.youtube.com/watch?v=VcZGQq412f4

Page 146 of 146

References:

1. Corporation, I. (1998, 2010.). Database SQL programming. IBM Corporation.

2. Halvorsen, H.-P. (2016.01.08). Structured Query Language (SQL). University College of

Southeast Norway.

3. https://www.w3schools.com/sql/sql_constraints.asp. (Retrieved on 1st June 2020).

4. Ltd., T. P. (2017). sql_tutorial POINT. Tutorials Point.

5. https://www.geeksforgeeks.org/sql-tutorial/.(Retrieved on 1st June 2020).

6. Ryan K.Stephens, R. R. Teach Yourself SQL in 21 Days, Second Edition. Indianapolis: SAMS.

