

Version Control

SWDVC301
01 SOFTWARE

DEVELOPMENT

TRAINEE'S MANUAL

RQF LEVEL 3

October, 2024

VERSION CONTROL

2024

iii | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

AUTHOR’S NOTE PAGE (COPYRIGHT)

The competent development body of this manual is Rwanda TVET Board ©, reproduce with

permission.

All rights reserved.

● This work has been produced initially with the Rwanda TVET Board with the support

from KOICA through TQUM Project

● This work has copyright, but permission is given to all the Administrative and Academic

Staff of the RTB and TVET Schools to make copies by photocopying or other duplicating

processes for use at their own workplaces.

● This permission does not extend to making of copies for use outside the immediate

environment for which they are made, nor making copies for hire or resale to third

parties.

● The views expressed in this version of the work do not necessarily represent the views

of RTB. The competent body does not give warranty nor accept any liability

● RTB owns the copyright to the trainee and trainer’s manuals. Training providers may

reproduce these training manuals in part or in full for training purposes only.

Acknowledgment of RTB copyright must be included on any reproductions. Any other

use of the manuals must be referred to the RTB.

© Rwanda TVET Board

Copies available from:

o HQs: Rwanda TVET Board-RTB

o Web: www.rtb.gov.rw

o KIGALI-RWANDA

Original published version: October 2024

http://www.rtb.gov.rw/

iv | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

ACKNOWLEDGEMENTS

The publisher would like to thank the following for their assistance in the elaboration of this

training manual:

Rwanda TVET Board (RTB) extends its appreciation to all parties who contributed to the

development of the trainer’s and trainee’s manuals for the TVET Certificate III in Software

development, specifically for the module "SWDVC301: Version Control."

We extend our gratitude to KOICA Rwanda for its contribution to the development of these

training manuals and for its ongoing support of the TVET system in Rwanda.

We extend our gratitude to the TQUM Project for its financial and technical support in the

development of these training manuals.

We would also like to acknowledge the valuable contributions of all TVET trainers and industry

practitioners in the development of this training manual.

The management of Rwanda TVET Board extends its appreciation to both its staff and the

staff of the TQUM Project for their efforts in coordinating these activities.

v | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

This training manual was developed:

Under Rwanda TVET Board (RTB) guiding policies and directives

Under Financial and Technical support of

vi | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

COORDINATION TEAM

RWAMASIRABO Aimable

MARIA Bernadette M. Ramos

MUTIJIMA Asher Emmanuel

PRODUCTION TEAM

Authoring and Review

MUKESHIMANA Anastase

BIZIMUNGU Damien

Validation

NYABUHORO Elisabeth

HABIGENA Alexandre

KWIZERA Emmanuel

Conception, Adaptation and Editorial works

HATEGEKIMANA Olivier

GANZA Jean Francois Regis

HARELIMANA Wilson

NZABIRINDA Aimable

DUKUZIMANA Therese

NIYONKURU Sylvestre

BIZIMANA Eric

Formatting, Graphics, Illustrations, and infographics

YEONWOO Choe

SUA Lim

SAEM Lee

SOYEON Kim

WONYEONG Jeong

HAKIZAYEZU Adrien

Financial and Technical support

KOICA through TQUM Project

vii | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

TABLE OF CONTENT

AUTHOR’S NOTE PAGE (COPYRIGHT) --- iii

ACKNOWLEDGEMENTS -- iv

TABLE OF CONTENT --- vii

ACRONYMS --- viii

INTRODUCTION --- 1

MODULE CODE AND TITLE: SWDVC301 VERSION CONTROL --------------------------------------- 2

Learning Outcome 1: Setup Repository -- 3

Key Competencies for Learning Outcome 1: Setup Repository ----------------------------------- 4

Indicative content 1.1: introduction to version control --- 6

Indicative content 1.2: Description of Git --- 21

Indicative content 1.3: Use of GitHub repository -- 47

Learning outcome 1 end assessment -- 60

References -- 63

Learning Outcome 2: Manipulate Files --- 64

Key Competencies for Learning Outcome 2: Manipulate files------------------------------------ 65

Indicative content 2.1: Add file change to Git staging area --------------------------------------- 67

Indicative content 2.2: Commit File changes to git local repository and manage branch -- 87

Learning outcome 2 end assessment -- 117

References -- 119

Learning Outcome 3: Ship Codes --- 120

Key Competencies for Learning Outcome 3: Ship codes. -- 121

Indicative content 3.1: Fetch file from GitHub repository --------------------------------------- 123

Indicative content 3.2: Push files to remote branch -- 138

Indicative content 3.3: Merge branches on remote repository -------------------------------- 149

Learning outcome 3 end assessment -- 168

References -- 170

viii | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

ACRONYMS

CBT: Competency-Based Training

CMD: command prompt

CVS: Concurrent Version System

Git: Global information tracker

INIT: Initialization

Rm: Remove

RTB: Rwanda TVET Board

SVN: subversion

TQUM Project: TVET Quality Management Project

TVET: Technical and Vocational Education and Training

URL: Uniform resource locator

about:blank

1 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

INTRODUCTION

This trainee's manual includes all the knowledge and skills required in Software development

specifically for the module of "Version Control". Trainees enrolled in this module will engage

in practical activities designed to develop and enhance their competencies. The development

of this training manual followed the Competency-Based Training and Assessment (CBT/A)

approach, offering ample practical opportunities that mirror real-life situations.

The trainee's manual is organized into Learning Outcomes, which is broken down into

indicative content that includes both theoretical and practical activities. It provides detailed

information on the key competencies required for each learning outcome, along with the

objectives to be achieved.

As a trainee, you will start by addressing questions related to the activities, which are

designed to foster critical thinking and guide you towards practical applications in the labor

market. The manual also provides essential information, including learning hours, required

materials, and key tasks to complete throughout the learning process.

All activities included in this training manual are designed to facilitate both individual and

group work. After completing the activities, you will conduct a formative assessment, referred

to as the end learning outcome assessment. Ensure that you thoroughly review the key

readings and the 'Points to Remember' section.

2 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

MODULE CODE AND TITLE: SWDVC301 VERSION CONTROL

Learning Outcome 1: Setup repository

Learning Outcome 2: Manipulate files

Learning Outcome 3: Ship codes

3 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Learning Outcome 1: Setup Repository

4 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Indicative contents

1.1 Introduction to version control

1.2 Description of Git

1.3 Use of GitHub repository

Key Competencies for Learning Outcome 1: Setup Repository

Knowledge Skills Attitudes

• Description of version

control

• Description of Terminals

used in version control

• Description of Git

• Description of GitHub

• Using CMD terminal

commands for directory

management

• Installing Git

• Preparing Git

environment

• Configuring .gitignore

file

• Creating local repository

• Creating GitHub

account

• Creating new remote

repository

• Applying Git commands

related to repository

• Being Problem solver

• Have Team work spirit

• Have critical thinking

• Being self-motivation

• Being Adaptability

• Being Practical oriented

5 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Duration:20 hrs

Learning outcome 1 objectives:

By the end of the learning outcome, the trainees will be able to:

1. Describe clearly version control based on software development process

2. Use correctly terminals based on computer system available

3. Prepare properly Git environment based on Git command

4. Create properly Git Repository based on the project requirements

5. Create correctly GitHub account based on project requirement

6. Create correctly remote repository based on software development standard

7. Set properly Remote URL in accordance with Git commands.

Resources

Equipment Tools Materials

• Computer ● Git

● GitHub

● Text editor (vs code)

● Terminal (CMD, Gitbash).

• Internet

• Electricity

6 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Indicative content 1.1: introduction to version control

1: you are requested to answer the following questions related to the Version Control:

1. What do you understand about Version Control?

2. What is Terminal in software development

3. Describe the Different types of version control systems

4. Where version control is applied

5. What are the benefits of version control?

2: Provide your answers to papers.

3: Present the findings/answers to the whole class or trainer

4: For more clarification, read the key readings 1.1.1. In addition, ask questions where

necessary.

Key readings 1.1.1: Introduction to version control

1. Definition of Version control

Version control is a system that records changes to a file or set of files over time so that you

can recall specific versions later. As the name Version Control suggests, it is a system that

records changes made to a file or a set of files. The system refers to the category of software

tools that make it possible for the software team to look after the source code changes

whenever needed. The system records all the made changes to a file so a specific version

may be rolled if required in the future.

The responsibility of the Version control system is to keep all the team members on the

same page. It makes sure that everyone on the team is working on the latest version of the

file and, most importantly, makes sure that all these people can work simultaneously on

the same project.

The responsibility of the Version control system is to keep all the team members on the

same page. It makes sure that everyone on the team is working on the latest version of the

file and, most importantly, makes sure that all these people can work simultaneously on

the same project.

Let's try to understand the process with the help of this diagram:

There are 3 workstations or three different developers at three other locations, and there's

one repository acting as a server. The work stations are using that repository either for the

process of committing or updating the tasks.

Duration: 5 hrs

Theoretical Activity 1.1.1: Description of version control

Tasks:

7 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Figure 1: Example of version control

There may be a large number of workstations using a single server repository. Each

workstation will have its working copy, and all these workstations will be saving their source

codes into a particular server repository.

This makes it easy for any developer to access the task being done using the repository. If

any specific developer's system breaks down, then the work won't stop, as there will be a

copy of the source code in the central repository.

For example, if you are working on a long report or a collaborative document, Use version

control to track changes to the document, review history, and revert to previous versions if

necessary. Tools like Google Docs or Microsoft Word with version history features are great

for this.

Secondly, Multiple developers work on the same project, each handling different features

or fixes use Version Control to Create branches for each feature or fix, allowing developers

to work independently without interfering with each other's code. Merge branches into the

main codebase once the changes are reviewed and tested.

2. Types of version control system

2.1. Centralized version control

With centralized version control systems, you have a single “central” copy of your project

on a server and commit your changes to this central copy.

A centralized version control system offers software development teams a way to

collaborate using a central server. In a centralized version control system (CVCS), a server

acts as the main repository which stores every version of code.

You pull the files that you need, but you never have a full copy of your project locally. Some

of the most common version control systems are centralized, including Subversion (SVN)

and Perforce.

8 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Centralized version control systems have many benefits, especially over local version

control systems(VCSs).

• Everyone on the system has information about the work that others are doing on

the project.

• Administrators have control over other developers.

• It is easier to deal with a centralized version control system than a localized version

control system.

• A local version control system facilitates a server software component that stores

and manages the different versions of the files.

It also has the same drawback as in the local version control system that it also has a single

point of failure.

Figure 2: Centralized Version Control

Centralized Version Control System uses a central server to store all the database and team

collaboration. But due to single point failure, which means the failure of the central server,

developers do not prefer it. Next, the Distributed Version Control System is developed.

In centralized version control, there is a single central repository where all files and changes

are stored. Developers check out files from this central repository, make changes, and then

check the files back in. The central repository holds the full history of changes.

Examples:

9 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

• SVN (Subversion): SVN is a centralized version control system designed as a

successor to CVS, offering features for version tracking, revision management, and

team collaboration with a centralized repository model.

• It is A popular centralized version control system known for its simplicity and ease

of use.

• Perforce: Often used in large enterprises and gaming industries for its performance

and scalability.

• CVS (Concurrent Version System): CVS is an older centralized version control system

that allows multiple developers to work on the same codebase concurrently,

managing file versions and facilitating collaboration.

2.2. Distributed version control

In a Distributed Version Control System (such as Git, Mercurial, Bazaar, or Darcs), the user

has a local copy of a repository. So, the clients don't just check out the latest snapshot of

the files even they can fully mirror the repository. The local repository contains all the files

and metadata present in the main repository.

With distributed version control systems (DVCS), you don't rely on a central server to store

all the versions of a project’s files. Instead, you clone a copy of a repository locally so that

you have the full history of the project. Two common distributed version control systems

are Git and Mercurial.

While you don't have to have a central repository for your files, you may want one "central"

place to keep your code so that you can share and collaborate on your project with others.

That's where Bitbucket comes in. Keep a copy of your code in a repository on Bitbucket so

that you and your teammates can use Git or Mercurial locally and to push and pull code.

Distributed version control system allows automatic management branching and merging.

It speeds up most operations except pushing and pulling. Distributed version control system

enhances the ability to work offline and does not rely on a single location for backups. If

any server stops and other systems were collaborating via it, then any of the client

repositories could be restored by that server. Every checkout is a full backup of all the data.

 In distributed version control, every user has a complete copy of the repository, including

its history. This allows for offline work and more robust branching and merging capabilities.

Users can work independently and then synchronize changes with others.

 Examples:

• Git: The most widely used distributed version control system, known for its

branching and merging capabilities. Git is the backbone of platforms like GitHub,

GitLab, and Bitbucket.

It is used in software development for tracking changes, enabling collaboration, and

providing efficient version control.

10 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

• Mercurial: Another distributed version control system, similar to Git but with a

different command structure and workflow.

• It provides features for tracking changes, managing revisions, and supporting

collaboration among developers.

Figure 3: Distributed Version Control

2.3 Local version control

A local version control system is a local database located on your local computer, in which

every file change is stored as a patch.

The localized version control method is a common approach because of its simplicity. But

this approach leads to a higher chance of error. In this approach, you may forget which

directory you're in and accidentally write to the wrong file or copy over files you don't want

to.

To deal with this issue, programmers developed local VCSs that had a simple database. Such

databases kept all the changes to files under revision control. A local version control system

keeps local copies of the files.

The major drawback of Local VCS is that it has a single point of failure.

 Local version control systems are simpler and store changes to files locally on a single

machine. They are less suited for collaborative work but can be useful for individual

developers to keep track of changes on their local files.

 Examples:

11 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

• RCS (Revision Control System): A simple local version control system that manages

individual files and their revisions.

• SCCS (Source Code Control System): An older local version control system that was

commonly used for managing source code.

Figure 4: Local Version Control

 3.Application of version control

Version control systems find applications in various industries and software development

scenarios:

Software Development: Used extensively to manage source code, enable collaboration,

and maintain code integrity throughout the development process.

Web Development: Crucial for coordinating efforts, sharing code, and managing versions

in web development projects.

Mobile App Development: Essential for managing codebases across iOS and Android

platforms, ensuring consistency and facilitating collaboration.

Data Science and Machine Learning: Enables reproducibility of experiments, tracks changes

to code and data files, and fosters collaboration among data scientists.

Game Development: Facilitates collaboration among artists, programmers, and designers,

ensuring synchronized development of game assets and code.

12 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Documentation and Technical Writing: Helps authors track changes, collaborate with

reviewers, and maintain a history of revisions for documentation projects.

Open-Source Projects: Fundamental for distributed collaboration, code sharing, and

managing contributions and releases in open-source software development.

Configuration Management: Tracks changes to configuration files, infrastructure code, and

deployment scripts, ensuring well-documented and reproducible configurations.

Academic Research and Collaborative Writing: Enables multiple researchers or authors to

work on the same document, track changes, and maintain a clear version history.

Content Management: Applied to track and manage changes to text-based content, such

as articles, blog posts, and documentation.

 4.Benefits of Version control

Version control systems offer several benefits to developers and teams:

4.1 Collaboration: Version control enables seamless collaboration, allowing multiple people

to work on the same project simultaneously.

4.2 Change Tracking: It tracks changes made to files, providing a complete history of

modifications and facilitating code review.

 4.3 Reproducibility: Developers can easily recreate previous code versions for debugging

and troubleshooting purposes.

4.4 Branching and Merging: Version control supports branching, allowing the creation of

separate lines of development that can later be merged.

4.5 Backup and Recovery: It serves as a reliable backup mechanism, reducing the risk of

data loss and aiding in disaster recovery.

4.6 Code Reviews: Version control facilitates code review processes, improving code quality

and maintaining standards.

4.7 Traceability and Accountability: Detailed logs of changes promote accountability and

traceability within the development process.

4.8 Synchronization and Deployment: Version control helps manage different

environments and enables efficient code synchronization and deployment.

4.9 Parallel Development: It supports parallel development by allowing multiple

developers to work on different features simultaneously.

4.10 Open Source Collaboration: Version control is crucial for open-source projects,

fostering collaboration among geographically dispersed developers.

5. Definition of terminal

In computing, a terminal refers to a program or a hardware device that allows users to

interact with a computer system, typically through a command-line interface (CLI). The

terminal provides a text-based interface where users can input commands and receive

textual output from the computer.

13 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

In the context of version control, a terminal (also known as a command line interface or

CLI) is a text-based interface used to interact with version control systems through

commands. It allows users to perform version control operations, such as managing

repositories, tracking changes, and collaborating with others, directly through typed

commands rather than graphical interfaces.

5.1 Most popularly terminals

Here are some of the most popular terminals used across various operating systems:

1. Git Bash (Windows)

• Overview: Git Bash is an application for Windows that provides a Bash emulation

environment. It comes bundled with Git for Windows and allows you to use Unix-

style commands on Windows.

• Importance: Git Bash is important because it provides a familiar Bash-like

environment on Windows, allowing users to run Git commands and use Unix-like

tools, which is helpful for consistency across different operating systems.

• Features: Includes Git command-line tools, Unix commands, and Bash scripting

capabilities.

2. Terminal (macOS)

• Overview: The built-in terminal application on macOS that supports Unix-based

commands.

The Terminal app on macOS is a command-line interface that supports Unix-based

commands, including Git commands.

• Importance: On macOS, the Terminal provides a native environment for running Git

commands and managing repositories. It’s essential for macOS users who need to

interact with Git and perform version control tasks directly from their system.

• Features: Provides a native command-line interface for running Git commands, shell

scripting, and interacting with the macOS system.

3. Command Prompt (Windows)

• Overview: The default command-line interface on Windows, also known as

cmd.exe.

 The Command Prompt (cmd.exe) is the default command-line interface on

Windows. Git can be used within this environment if Git is installed and properly

configured.

• Importance: While less powerful than Git Bash for Unix-like commands, the

Command Prompt can still be used to run Git commands. It is important for users

who prefer or require the native Windows command-line environment.

• Features: Supports basic command-line operations and can be used with Git if

properly configured.

4. PowerShell (Windows)

14 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

• Overview: A more advanced command-line shell and scripting language for

Windows. It can be used to run Git commands if Git is installed and configured.

• Importance: PowerShell provides more advanced scripting capabilities compared to

the Command Prompt and can be used to automate Git-related tasks. It’s important

for users who need more powerful scripting features.

• Features: Provides extensive scripting capabilities, access to .NET framework, and

integration with Windows management tasks.

several terminal environments can be used depending on your operating system and

personal preference. Each of these terminals allows you to run Git commands and interact

with Git repositories.

Why the Terminal is Important for Git:

• Direct Access: The terminal provides direct access to Git commands and

functionalities without the need for a graphical interface.

• Efficiency: Commands can be executed quickly and efficiently, especially when

dealing with large repositories or complex workflows.

• Advanced Features: The terminal allows users to access advanced Git features and

configurations that may not be available in graphical user interfaces.

• Scripting and Automation: The terminal supports scripting and automation, making

repetitive tasks and batch operations more manageable.

• Flexibility: Different terminals provide flexibility depending on the operating system

and user preference, ensuring that users can work effectively in their preferred

environment.

 The terminal is a crucial tool for interacting with Git, offering power, flexibility, and

efficiency for version control tasks. The choice of terminal depends on the operating system

and the specific needs of the user.

 6.Commands used in CMD

• md or Mkdir command: it is used to Create a project directory.it is command which

are enabled by default, allow you to use a single mkdir command to create

intermediate directories in a specified path.

• dir command: it is used to List out directory contents, to display all files and

directories, including hidden ones, in wide format The "dir" command is useful for

quickly viewing the contents of a directory and getting information about files and

directories within it

• cd command: it is used Changing the working directory. It allows you to navigate

through the file system and switch to a different directory. The "cd" command is

essential for navigating the file system in Command Prompt and allows you to

change directories to access different files and directories.

15 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

• cd.. Command: it is used Moving up to the parent directory. it as a shorthand way

of using the "cd" command to move up one level. The "cd.." command is useful for

quickly moving up to the parent directory without having to specify the full path.

• rd or rmdir Command: it is used Deleting a directory, the "rd" or "rmdir" command

in Command Prompt (cmd) that are used to remove (delete) an empty directory.

Both "rd" and "rmdir" are aliases of the same command and can be used

interchangeably. But remember to use the appropriate directory name when

executing the command.

• del Command: it is used Deleting a file, this command will delete all files with the

".txt" extension in the current directory. The "del" command permanently deletes

files, and they cannot be recovered from the Recycle Bin. Remember to use the

appropriate file name(s) or wildcard pattern when executing the command.

• copy Command: it is used Copying a file, this command used to copy one or more

files from one location to another, but If the destination path is not specified, the

file(s) will be copied to the current directory.so that is why is very important to

Remember to use the appropriate file name(s) and destination path when executing

the command.

• move Command: it is used to move a file, the "move" command in Command

Prompt (cmd) is used to move one or more files or directories from one location to

another. Remember to use the appropriate file name(s) or directory name(s) and

destination path when executing the command.

• ren Command: it is used Renaming a file, the "ren" command in Command Prompt

(cmd) is used to rename files or directories. Use the "ren" command followed by the

current name of the file or directory and the new name you want to assign. For

example: ren current_name new_name: This command will rename the file or

directory with the specified "current_name" to the "new_name. If the file or

directory you want to rename has spaces in its name, enclose the names in double

quotation marks.

• type Command: it is used to View file content, the "type" command in Command

Prompt (cmd) is used to display the contents of a text file directly. Use the "type"

command followed by the name of the text file you want to display its contents. The

"type" command is typically used for text files. It may not display the contents of

binary files correctly. Remember to use the appropriate file name when executing

the command. The "type" command is useful for quickly viewing the contents of a

text file without opening it in a separate program.

• cls Command: it is used to clear the CMD terminal. The "cls" command in Command

Prompt (cmd) is used to clear the contents of the command prompt window,

providing a clean slate. to clear the contents of the command prompt window,

simply type "cls" and press Enter. After executing the command, the command

prompt window will be cleared, and you will see a fresh, empty command prompt.so

16 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

The "cls" command is useful for clearing the screen and removing the clutter of

previous commands and outputs, providing a clean workspace.

• echo command: it is used to display a message, the "echo" command is useful for

displaying messages, checking the value of environment variables, and controlling

the echoing of command lines. The echo command can be used to display a

message, variable value, or system information on the console. The command can

be followed by a message or text string enclosed in double quotes. For example,

echo “Hello, World!” will display the message “Hello, World!” on the console.

• exit Command: it is used Exiting the CMD terminal, the "exit" command in

Command Prompt (cmd) is used to close the command prompt window. The "exit"

command is useful for quickly closing the command prompt window when you're

done with your tasks.

Figure 1

1: Referring to the previous theoretical activities (1.1.1) you are requested to go to the

computer lab to use cmd commands to create a directory, change directory, rename

directory, delete directory etc…. This task should be done individually.

2: Launch CMD

3: Referring to the steps provided in key readings 1.1.2, use CMD commands to create a

directory, change directory, Rename directory, delete directory etc…. .

4: Present your work to the trainer and whole class

Key readings 1.1.2: Applying CMD commands

1. Use of CMD Commands

1.1. Launch CMD

There are several ways to open the Command Prompt:

● Press Windows Key + R, type "cmd" or "cmd.exe" in the Run dialog, and press Enter.

● Press Windows Key, type "Command Prompt" in the search bar, and click on the

Command Prompt app.

● Press Windows Key + X, then select "Command Prompt" or "Command Prompt

(Admin)" from the Power User menu.

1.2. Understanding the command prompt:

Practical Activity 1.1.2: Using CMD commands

Task:

17 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

The command prompt displays a current directory, usually starting with

C:\Users\YourUsername. This is the location where commands will be executed.

You can type commands directly after the command prompt and press Enter to execute

them.

Directory management using CMD commands

1. md or mkdir: Make Directory. This command creates a new directory.

● Example: md MyFolder or mkdir MyFolder (Creates a new folder named

"MyFolder" in the current directory)

2. dir: Directory Listing. This command lists the files and folders in the current

directory.

● Example: dir (Lists the files and folders in the current directory)

3. cd: Change Directory. This command is used to navigate between directories.

● Example: cd C:\Users (Moves to the "Users" directory on the C drive)

4. Cd..: Change to Parent Directory. This command moves up one level in the directory

structure.

● Example: cd.. (Moves to the parent directory of the current directory)

5. rd or rmdir: Remove Directory. This command deletes a directory.

● Example: rd MyFolder or rmdir MyFolder (Deletes the folder named

"MyFolder" in the current directory)

6. del: Delete. This command deletes a file.

● Example: del myfile.txt (Deletes the file "myfile.txt" in the current directory)

7. copy: Copy. This command copies files from one location to another.

● Example: copy C:\Folder1\file.txt D:\Folder2\ (Copies "file.txt" from

"Folder1" to "Folder" on different drives)

8. move: Move. This command moves files or directories to a different location.

● Example: move C:\Folder1\file.txt C:\Folder2\ (Moves "file.txt" from

"Folder1" to "Folder2" on the same drive)

9. ren: Rename. This command renames a file or directory.

● Example: ren myfile.txt newfile.txt (Renames the file "myfile.txt" to

"newfile.txt")

10. type: Display File Content. This command displays the contents of a text file.

● Example: type myfile.txt (Displays the contents of the file "myfile.txt")

11. cls: Clear Screen. This command clears the CMD window.

● Example: cls (Clears the CMD window)

12. echo: Display Text. This command displays text on the CMD window or writes it to

a file.

● Example: echo Hello, World! (Displays "Hello, World!" on the CMD window)

13. exit: Exit CMD. This command exits the CMD prompt and closes the CMD window.

● Example: exit (Exits the CMD prompt)

18 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

These commands are commonly used for various operations in CMD, including directory

management, file manipulation, and navigation.

1.3. Steps used to perform CMD Commands related to directory management

✓ md or Mkdir command:

1.Open the Command Prompt

2.Navigate to the Directory

3.Create the Directory

To perform the dir command, follow these steps:

Open the command prompt by pressing the Windows key and typing "cmd" or "command

prompt" in the search bar. Then click on "Command Prompt" or press Enter.

Once the command prompt is open, type "dir" and press Enter.

✓ cd Command

1.Open Command Prompt

2.Navigate to a Directory

● Change to a Specific Directory

● Change to a Different Drive

● Change to Parent Directory

● Change to User's Home Directory

● List Available Drives

3.Press Enter

4.Verify the Change

➔ Cd.. command

To implement the cd.. command and navigate up one level in the directory hierarchy, follow

these steps:

1) Open the command prompt by pressing the Windows key and typing "cmd" or

"command prompt" in the search bar. Then click on "Command Prompt" or press

Enter.

2) Once the command prompt is open, type cd followed by the path of the directory

you want to navigate to. For example, if you want to navigate to a directory named

"Folder1" located in your user directory, you would enter: cd

C:\Users\Username\Folder1 and press Enter.

3) Once you are in the desired directory, you can use the cd.. command to navigate up

one level at a time. Simply type cd.. and press Enter. This will move you to the parent

directory of the current directory.

4) You can use cd.. multiple times to navigate up multiple levels.

➔ Rd or rmdir command

Steps to implement the rd or rmdir command:

1. Open the command prompt by pressing the Windows key and typing "cmd" or

"command prompt" in the search bar. Then click on "Command Prompt" or press

Enter.

19 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

2. Once the command prompt is open, navigate to the directory containing the

directory you want to delete using the cd command. For example, if you want to

delete a directory named "Folder1" located on your desktop, enter cd

C:\Users\YourUserName\Desktop and press Enter. This will take you to your

desktop directory.

3. To delete the directory "Folder1", enter rd /s Folder1 or rmdir /s Folder1 and press

Enter. The /s option is used to delete the directory and all its subdirectories

recursively without prompting for confirmation. If there are any files or

subdirectories in the directory, you will be prompted to confirm the deletion. Type

Y and press Enter to confirm.

➔ Del command:

1. Open the Command Prompt:

2. Navigate to the directory containing the file(s) you want to delete:

Replace "C:\path\to\directory" with the actual path to the directory containing the

file(s) you want to delete.

3. Use the "del" command followed by the file name(s) or wildcard pattern to delete

the file(s).

➔ Copy command

1. Open the Command Prompt: Press the Windows key, type "cmd," and press Enter.

2. Navigate to the directory where the source file is located

3. Use the "copy" command followed by the source file name and the destination

directory to copy the file

➔ Move command:

1. Open the Command Prompt: Press the Windows key, type "cmd," and press Enter.

2. Navigate to the directory where the source file or directory is located

3. 3.Use the "move" command followed by the source file or directory name and the

destination directory to move the file or directory

➔ Ren command

1. Open the Command Prompt

2. Navigate to the directory where the file or directory you want to rename is located:

Use the "cd" command to navigate to the appropriate directory if needed

3. Use the "ren" command followed by the current name of the file or directory and

the new name you want to assign.

➔ Type command

1. Open the Command Prompt

2. Navigate to the directory where the text file is located

3. Use the "type" command followed by the name of the text file you want to display.

➔ Cls command

1. Open the Command Prompt

2. To clear the command window, simply type "cls" and press Enter.

20 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Echo command:

1. Open the Command Prompt: Press the Windows key, type "cmd," and press Enter.

2. To display text in the command window, simply type "echo" followed by the text

you want to display

3. to enable or disable the display of commands, you can use the "echo" command

with the "on" or "off" parameter.

➔ Exit command

In Windows, the exit command is used to close the command prompt window or

terminate a batch file.

To implement the exit command:

1. Open the command prompt by pressing the Windows key and typing "cmd" or

"command prompt" in the search bar. Then click on "Command Prompt" or

press Enter.

2. Once the command prompt is open, enter any commands you want to execute.

3. When you're ready to exit the command prompt, simply type exit and press

Enter. This will close the command prompt window.

● There are primarily three types of version control systems: Local Version Control

Systems, Centralized Version Control Systems, and Distributed Version Control

Systems.

● There are most popular terminals commonly used with popular version control

systems include: command prompt (CMD), PowerShell, Bash

● To use the CMD (Command Prompt) terminal effectively in Windows, follow these

basic steps:

1. Open CMD

2. Understanding the commands

You are a system administrator responsible for managing directories on a network server. You

requested to use the Command Prompt (CMD) to perform creation of directories, changing

directories, renaming directories, delete directories for efficient and precise management of

the network server's file system, ensuring optimal organization and accessibility.

Points to Remember

Application of learning 1.1.

21 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Indicative content 1.2: Description of Git

1. In small groups, you are requested to answer the following questions related to the Git:

i. What do you understand about git?

ii. Provide a description of:

● Features of git

● Git basic concepts

● Git architecture and git workflow.

2. Participate in group formulation

3. Present your findings to your classmates and trainer

4. For more clarification, read the key readings 1.2.1. In addition, ask questions where

necessary.

Key readings 1.2.1: Description of Git

1. Definition of Git

Git stands for "Global Information Tracker". It's a free, open-source version control system

that helps developers track and manage changes to source code. However, the name is

derived from the system’s ability to track changes to files, not just locally but globally, across

a network. GIT works by keeping a record of all the changes made to a project and it allows

multiple developers to work on the same project at the same time without interfering with

one another. This allows for easy collaboration, especially for large, complex projects.

Git is a distributed version control system (VCS) that is widely used in software

development. It allows multiple developers to work on a project simultaneously, keeping

track of changes made to the codebase and facilitating collaboration.

2. Features of Git

Git is a distributed version control system that is widely used for tracking changes in source

code during software development. Here are some key features of GIT:

1. Distributed Version Control: GIT is a distributed version control system, meaning

that each developer has a complete copy of the entire project history on their local

machine. This allows for decentralized collaboration and offline work.

Duration: 9hrs

Theoretical Activity 1.2.1: introduction of Git

Tasks:

22 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Figure 5: Distribution of Version Control to the users

2. Branching and Merging: GIT makes branching easy and encourages a branch-per-

feature workflow. Developers can create branches to work on specific features or

fixes, and later merge those branches back into the main codebase.

3. Fast and Lightweight: GIT is designed to be fast and efficient. It is a lightweight

system that doesn’t require constant communication with a central server. Most

operations are performed locally, making GIT quick and responsive.

4. Data Integrity: GIT uses a secure hashing algorithm (SHA-1) to ensure the integrity

of the versioned data. Each commit is checked, and the commit history is secured

against corruption.

5. Staging Area (Index): GIT has a staging area, also known as the index, where

changes can be selectively included before committing them. This allows developers

to control which changes are included in the next commit.

6. History Tracking: GIT maintains a detailed history of changes to the codebase.

Developers can view the history, see who made specific changes, and understand

how the project has evolved.

23 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

7. Parallel Development: Multiple developers can work on different features

simultaneously, and GIT can intelligently merge their changes. This parallel

development is facilitated by GIT’s branching and merging capabilities.

8. Open Source: GIT is an open-source project, and its source code is freely available.

This openness has led to a large and active community, contributing to its

widespread adoption.

9. Compatibility: GIT is platform-independent and works on various operating

systems, including Linux, macOS, and Windows. This makes it easy for teams with

diverse environments to collaborate.

10. Support for Non-linear Development: GIT supports non-linear development

workflows, allowing for complex project structures with features like topic

branches, release branches, and more.

11. Easy Collaboration: GIT facilitates collaboration among developers. Repositories

can be hosted on platforms like GitHub, GitLab, or Bitbucket, enabling easy sharing,

collaboration, and contribution from developers around the world.

12. Integration with Other Tools: GIT can be easily integrated with various

development tools and services. Continuous Integration (CI) platforms, issue-

tracking systems, and code review tools often have built-in support for GIT.

Understanding and effectively using GIT is a valuable skill for software developers, as it

provides a powerful and flexible version control system for managing codebases of all sizes

and complexities.

3. Git Basic concepts

3.1. Repository

In Git, the repository is like a data structure used by VCS to store metadata for a set of files

and directories. It contains the collection of the files as well as the history of changes made

to those files. Repository in Git is considered as your project folder. A repository has all the

project-related data. Distinct projects have distinct repositories.

They are two types of git repositories:

Local Repository: it is a folder in your machine (laptop or computer) where your code is

stored. A local source code or project store, means that only you have access to the code

and if your computer crashes or you lose that code, then it would be pretty hard to get it

back.

 Remote repository: it is a folder hosted on a website, like GitHub, for example, and your

code there is accessible to not just you, but your whole team! If you lose your code on your

computer, your code is still safe here! This is akin to iCloud storage.

3.2. Commit

It is used to record the changes in the repository. It is the next command after the git add.

Every commit contains the index data and the commit message. Every commit forms a

https://www.javatpoint.com/git-add

24 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

parent-child relationship. When we add a file in Git, it will take place in the staging area. A

commit command is used to fetch updates from the staging area to the repository.

The staging and committing are co-related to each other. Staging allows us to continue

making changes to the repository, and when we want to share these changes to the version

control system, committing allows us to record these changes.

Commits are the snapshots of the project. Every commit is recorded in the master branch

of the repository. We can recall the commits or revert it to the older version. Two different

commits will never be overwritten because each commit has its own commit-id. This

commit-id is a cryptographic number created by SHA (Secure Hash Algorithm) algorithm.

3.3. Branch

A branch is a version of the repository that diverges from the main working project. It is a

feature available in most modern version control systems. A Git project can have more than

one branch. These branches are a pointer to a snapshot of your changes. When you want

to add a new feature or fix a bug, you spawn a new branch to summarize your changes. So,

it is complex to merge the unstable code with the main code base and also facilitates you

to clean up your future history before merging with the main branch.

Figure 6: Branches

Git Master Branch

The master branch is a default branch in Git. It is instantiated when the first commit is made

on the project. When you make the first commit, you're given a master branch to the

starting commit point. When you start making a commit, then the master branch pointer

automatically moves forward. A repository can have only one master branch.

Master branch is the branch in which all the changes eventually get merged back. It can be

called as an official working version of your project.

25 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

3.4. Merge

Merge is the process of combining changes from one branch into another. It takes the

changes made in one branch and integrates them into another branch. This is often used to

incorporate feature branches back into the main branch.

In Git, the merging is a procedure to connect the forked history. It joins two or more

development history together. The git merge command facilitates you to take the data

created by git branch and integrate them into a single branch. Git merge will associate a

series of commits into one unified history. Generally, git merge is used to combine two

branches.

Figure 7: Merging branches

It is used to maintain distinct lines of development; at some stage, you want to merge the

changes in one branch. It is essential to understand how merging works in Git.

In the above figure, there are two branches master and feature. We can see that we made

some commits in both functionality and master branch, and merge them. It works as a

pointer. It will find a common base commit between branches. Once Git finds a shared base

commit, it will create a new "merge commit." It combines the changes of each queued

merge commit sequence.

3.5. Pull

The term pull is used to receive data from GitHub. It fetches and merges changes from the

remote server to your working directory. The Git pull command is used to pull a repository.

 Pulling is the process of fetching the latest changes from a remote repository and merging

them into your local branch. It combines the fetch (retrieving changes) and merge

(incorporating changes) steps.

3.6. Push

Pushing is the process of sending your local commits to a remote repository. It updates the

remote repository with your changes, making them available to other developers.

26 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

The push term refers to upload local repository content to a remote repository. Pushing is

an act of transfer commits from your local repository to a remote repository. Pushing is

capable of overwriting changes.

4. Git architecture

Figure 8: Git Architecture

1. Working Directory: The working directory is the directory on a developer's machine

where the files of the project are stored. Developers modify files in the working

directory as they work on the project.

2. Index (Staging Area): The staging area, also known as the index, is an intermediate

area where changes to files are prepared before they are committed to the

repository. Developers can selectively choose which changes to include in the next

commit by staging them.

3. Local Repository: The local repository contains a complete copy of the project's

repository, including all files, directories, commit history, branches, and tags. It enables

developers to access the project and its history offline.

4. Remote Repository: A remote is a version of the repository that is hosted on a different

machine or server. It allows multiple developers to collaborate by pushing and pulling

changes to and from a shared remote repository.

5. Git workflow

Git workflow refers to the specific set of practices and processes that are followed when

using Git, a distributed version control system. It encompasses the way developers

collaborate, manage and track changes to their codebase, and coordinate their work

effectively.

27 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

1.Branch: Create a new branch to work on a specific task or feature. This allows you to

isolate your changes from the main branch.

2. Edit: Make changes to files in your working directory.

3. Stage: Selectively choose the modified files you want to include in the next commit and

add them to the staging area.

4. Commit: Create a new commit to record the changes in the repository. Provide a

meaningful commit message that describes the changes made.

5. Push: Upload or send your local commits to the remote repository, making them

available to others.

6. Merge: If you are working on a branch, you can merge your changes back into the main

branch once they are tested and ready.

7. Pull: Regularly download changes from the remote repository to stay up to date with the

latest changes made by other team members.

Figure 9: Git workflow simplified

6. Commands used in git configuration

6.1 The Git config commands

Git supports a command called git config that lets you get and set configuration variables

that control all facets of how Git looks and operates. It is used to set Git configuration values

on a global or local project level.

6.2 Git version command

In version control, "Git version" refers to the specific version or release of the Git software

that is being used. Git is a distributed version control system that allows developers to track

changes, collaborate on projects, and maintain a history of their code. Git follows a

versioning system, where each release or version of Git has a specific number associated

with it. The version number usually consists of three parts: simply we run git version for

checking current version git we are already running in our computers

28 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

6.3 Git init command

It is a command used to create a new repository: Running "git init" in a directory initializes

a new Git repository in that location. Git creates a hidden “. git" folder, which contains all

the necessary files and subdirectories to manage version control. To create a new

repository, you'll use the git init command, also git init is a one-time command you use

during the initial setup of a new repository

6.4 Git ignore command

The gitignore file is a configuration file used in version control systems, specifically Git, to

specify files, directories, or patterns that should be ignored and not tracked by Git. When

you add files or directories to the .git ignore file, Git will exclude them from version control,

meaning they will not be staged, committed, or pushed to the repository.

1: Referring to the previous theoretical activities (1.2.1) you are requested to go to the

computer lab to install and configure git set up. This task should be done individually.

3: Present out the steps to install git set up.

4: Referring to the steps provided on task 3, install git set up.

5: Present your work to the trainer and whole class

6: Read key reading 1.2.2 and ask clarification where necessary

7: Perform the task provided in application of learning 1.2.

Key readings 1.2.2: Preparing Git environment

1. Steps to Install Git for Windows

1.1 Download Git for Windows

1. Browse to the official Git website: https://git-scm.com/downloads

2. Click the download link for Windows and allow the download to complete.

Practical Activity 1.2.2: Installing git set up

Task:

29 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

1.2 Extract and Launch Git Installer

3. Browse to the download location (or use the download shortcut in your browser).

Double-click the file to extract and launch the installer.

4. Allow the app to make changes to your device by clicking Yes on the User Account Control

dialog that opens.

30 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

5. Review the GNU General Public License, and when you’re ready to install, click Next.

6. The installer will ask you for an installation location. Leave the default, unless you have

reason to change it, and click Next.

31 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

7. A component selection screen will appear. Leave the defaults unless you have a specific

need to change them and click Next.

8. The installer will offer to create a start menu folder. Simply click Next.

32 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

9. Select a text editor you’d like to use with Git. Use the drop-down menu to select

Notepad++ (or whichever text editor you prefer) and click Next.

10. The next step allows you to choose a different name for your initial branch. The default

is 'master.' Unless you're working in a team that requires a different name, leave the default

option and click Next.

33 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

11. This installation step allows you to change the PATH environment. The PATH is the

default set of directories included when you run a command from the command line. Leave

this on the middle (recommended) selection and click Next.

Server Certificates, Line Endings and Terminal Emulators

12. The installer now asks which SSH client you want Git to use. Git already comes with its

own SSH client, so if you don't need a specific one, leave the default option and click Next.

34 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Note: Check out our comparison of SSH and HTTPS for Git and which one you should use.

13. The next option relates to server certificates. Most users should use the default. If you’re

working in an Active Directory environment, you may need to switch to Windows Store

certificates. Click Next.

14. The next selection converts line endings. It is recommended that you leave the default

selection. This relates to the way data is formatted and changing this option may cause

problems. Click Next.

https://phoenixnap.com/kb/git-ssh-vs-https

35 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

15. Choose the terminal emulator you want to use. The default MinTTY is recommended,

for its features. Click Next.

16. The installer now asks what the git pull command should do. The default option is

recommended unless you specifically need to change its behavior. Click Next to continue

with the installation.

https://phoenixnap.com/glossary/terminal-emulation

36 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

17. Next you should choose which credential helper to use. Git uses credential helpers to

fetch or save credentials. Leave the default option as it is the most stable one, and

click Next.

Additional Customization Options

18. The default options are recommended; however this step allows you to decide which

extra option you would like to enable. If you use symbolic links, which are like shortcuts for

the command line, tick the box. Click Next.

37 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

19. Depending on the version of Git you’re installing, it may offer to install experimental

features. At the time this article was written, the options to include support for pseudo

controls and a built-in file system monitor were offered. Unless you are feeling

adventurous, leave them unchecked and click Install.

Complete Git Installation Process

20. Once the installation is complete, tick the boxes to view the Release Notes or Launch

Git Bash, then click Finish.

38 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Note: Learn the differences between CLI and GUI.

1.3 How to Launch Git in Windows

Git has two modes of use – a bash scripting shell (or command line) and a graphical user

interface (GUI).

a) Launch Git Bash Shell

To launch Git Bash open the Windows Start menu, type git bash and press Enter (or click

the application icon).

https://phoenixnap.com/kb/cli-vs-gui

39 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

b) Launch Git GUI

To launch Git GUI open the Windows Start menu, type git gui and press Enter (or click the

application icon).

40 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Steps to perform git configuration:

Performing Git configuration involves setting up your identity (name and email), choosing

a text editor, and configuring other settings. Here are the steps to perform Git

configuration:

1. verify that Git is installed

After the installation is complete, Sarah opens a new terminal or command prompt to verify

that Git is installed. She runs the following command:

2. Set Your Name and Email:

Use the git config command to set your name and email. This information will be associated

with your commits.

Replace "Your Name" with your actual name and "your.email@example.com" with your

actual email address.

3. Configure Your Preferred Text Editor:

Set your preferred text editor for Git commit messages. This is the editor that will open

when you make a commit.

For example, if you want to use Visual Studio Code:

Replace "code" with the command for your preferred text editor.

4. Check Your Configuration:

To view your Git configuration, use the following command:

41 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

5. Configure Default Branch Name (Optional):

If you want to use a branch name other than "master" or "main" as the default branch name

for new repositories, you can configure it:

Replace "main" with your preferred default branch name.

6. Set Up a Global .gitignore (Optional):

If you want to use a global .gitignore file across multiple repositories, you can create a

global .gitignore file and tell Git to use it:

7. Verify the installation:

Check Which Version of Git You’re Using

The command to check which version of Git you’re using is the same on both Windows and

Mac. To check your Git version, open Command Prompt (Windows), Terminal (Mac), or the

Linux terminal. Once open, run this command:

git --version

The Git version you’re currently using will be returned.

https://www.howtogeek.com/235101/10-ways-to-open-the-command-prompt-in-windows-10/
https://www.howtogeek.com/682770/how-to-open-the-terminal-on-a-mac/
https://www.howtogeek.com/686955/how-to-launch-a-terminal-window-on-ubuntu-linux/
https://www.howtogeek.com/686955/how-to-launch-a-terminal-window-on-ubuntu-linux/

42 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Now that you know which version of Git you’re using, you can decide if you want to update

it or not.

How to Update Git on Windows

The command you use to update Git on Windows depends on which version of Git you’re

currently using. If you’re using any version from 2.14.2 to 2.16.1, then run this command in

Command Prompt:

git update

If you’re using any version after 2.16.1, then you’ll need to run this command instead:

git update-git-for-windows

Regardless of which command you need to use, your Git version will update or you’ll get a

message saying you’re up to date if you’re already using the latest version.

If you’re using a version older than 2.14.2, then you’ll need to get the latest installer from

the download portal and update your Git version the same way as when you installed Git

for the first time.

Apply Git configuration

The git config command is used to set or get configuration variables in Git. These variables

can control various aspects of Git's behavior, such as user information, default behavior,

and repository settings.

Here are some practical Git configurations with examples:

https://git-scm.com/download

43 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

1. Set your name and email:

git config --global user.name "Your Name"

git config --global user.email "your@email.com"

This configuration sets your name and email globally, which will be used for all your Git

commits.

2. Configure your preferred text editor:

git config --global core.editor "vim"

This configuration sets Vim as the default text editor for Git. You can replace "vim" with the

name of your preferred editor.

3. Set default branch name:

git config --global init.defaultBranch "main"

This configuration sets the default branch name to "main" when creating a new repository.

4. Enable colored output:

git config --global color.ui true

This configuration enables colored output in Git's command-line interface, making it easier

to read and interpret.

5. Exclude certain files from being tracked:

git config --global core.excludesfile ~/.gitignore_global

This configuration specifies a global gitignore file that contains patterns for files and

directories you want Git to ignore by default.

These are just a few examples of practical Git configurations. You can explore more

configuration options and customize Git based on your specific needs.

6. Git Init command

In order to work with code using Git, you need to store your code in a Git repository .

Repositories, or repos, are storage containers for a project where you can save different

versions of your code.

There are two ways to start working with Git. First, you can clone an existing repository

using git clone. This will copy all the code and history from an existing project to your local

machine. Second, you can create a new repository using git init, which will have its own

versioning system and history.

The git init command creates an empty Git repository. init can be used to convert an existing

https://careerkarma.com/blog/what-is-git/

44 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

project into a Git repository. The init command can also initialize an empty repository for a

new project.

What Happens When You Use Git Init

When you run git init, a folder called .git is created in your current working directory (the

folder you are viewing). This folder contains all the files and metadata used by the Git

version control system. For instance, in this folder you will see a file called HEAD. The GIt

HEAD file points to the Git commit which you are viewing on your local machine.

The git init command does not change the project in the folder in which you run the

command. This is because all the main files git needs are stored within the .git directory

that the git init command creates.

The git init command is the first command you’ll run if you are starting a new Git project

How to Use Git Init

The git init command is easy to use. You don’t need to create a repository on a server to

start working with a git repository. Instead, you only have to navigate into your project

folder and run the git init command.

Here’s the syntax to create a git repo using the git init command:

git init

This command will initialize a new Git repository in the current working directory. So, before

you run the command, make sure you are in the directory in which you want to initialize a

repository.

Alternatively, you can specify the directory in which the new repository should be

initialized. The syntax for doing so is as follows:

git init <folder>

Suppose we wanted to initialize a repository in a folder called demo-project . We could do

so using this code:

git init demo-project

When we run this command, a .git folder is created within our demo-project folder, instead

of in our current working directory.

You can run the git init command in a folder which already has an existing git configuration.

This is because git init does not override an existing configuration. So, if you accidentally

run git init in an existing Git repository, nothing will happen.

https://careerkarma.com/blog/what-is-a-git-head/
https://careerkarma.com/blog/what-is-a-git-head/

45 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

4.7 Configure .gitignore file

Configuring ignored files for a single repository

You can create a .gitignore file in your repository's root directory to tell Git which files and

directories to ignore when you make a commit. To share the ignore rules with other users

who clone the repository, commit the .gitignore file in to your repository.

GitHub maintains an official list of recommended .gitignore files for many popular

operating systems, environments, and languages in the GitHub/gitignore public repository.

You can also use gitignore.io to create a .gitignore file for your operating system,

programming language, or IDE.

Open Git Bash.

Navigate to the location of your Git repository.

Create a .gitignore file for your repository.

$ touch .gitignore

If the command succeeds, there will be no output.

If you want to ignore a file that is already checked in, you must untrack the file before you

add a rule to ignore it. From your terminal, untrack the file.

$ git rm --cached FILENAME

Configuring ignored files for all repositories on your computer

You can also create a global .gitignore file to define a list of rules for ignoring files in every

Git repository on your computer. For example, you might create the file

at ~/.gitignore_global and add some rules to it.

Open Git Bash.

Configure Git to use the exclude file ~/.gitignore_global for all Git repositories.

$ git config --global core.excludesfile ~/.gitignore_global

Excluding local files without creating a .gitignore file

If you don't want to create a .gitignore file to share with others, you can create rules that

are not committed with the repository. You can use this technique for locally-generated

files that you don't expect other users to generate, such as files created by your editor.

Use your favorite text editor to open the file called .git/info/exclude within the root of your

Git repository. Any rule you add here will not be checked in, and will only ignore files for

your local repository.

https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#configuring-ignored-files-for-a-single-repository
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#configuring-ignored-files-for-all-repositories-on-your-computer
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#excluding-local-files-without-creating-a-gitignore-file
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#excluding-local-files-without-creating-a-gitignore-file
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#excluding-local-files-without-creating-a-gitignore-file

46 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Open Git Bash.

Navigate to the location of your Git repository.

Using your favorite text editor, open the file .git/info/exclude.

● Git's architecture is designed around the concept of a distributed version control system,

 allowing users to work independently and collaborate seamlessly. There are the key co

mponents and concepts of Git's architecture including: Working Directory, Index (Staging

Area), Local Repository, Remote Repository.

● Git, a powerful distributed version control system, is built on several fundamental conce

pts that form the foundation of its functionality. Here are Git's basic concepts including:

Repository, commit, branch, merge, pull, push.

● To install Git on Windows, follow these steps:

1. Download the Git installer

2. Run the Git installer

3. Choose the installation options

4. Complete the installation

 5. Verify the installation

● Basic commands to Configure GIT

1. Git init command

2. Git config command

3. Git – version command

XYZ Company, as part of your responsibilities, you need to showcase your expertise in Git for

our software development project. This involves installing the current version of Git, verifying

the installation, initializing a Git repository in the XYZ project folder, and configuring

the.gitignore file to exclude dot env file paths for security purposes

Points to Remember

Application of learning 1.2.

47 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Indicative content 1.3: Use of GitHub repository

1. In small groups, you are requested to answer the following questions related to the

GitHub:

I. What do you understand about GitHub?

II. Provide an explanation of:

• The features of GitHub

• Benefits of GitHub

• GitHub account

• Remote repository

• Git repository commands as used in GitHub.

2. Provide the answer for the asked questions and write them on papers.

3. Present the findings/answers to the whole class.

4. For more clarification, read the key readings 1.3.1. In addition, ask questions where

necessary.

Key readings 1.3.1: Description of GitHub

1. Definition of GitHub

GitHub is a large platform for code hosting. It supports version controlling and collaboration

and allows developers to work together on projects. It offers both distributed version

control and source code management (SCM) functionality of Git. It also facilitates

collaboration features such as bug tracking, feature requests, task management for every

project.

Essential components of the GitHub are:

o Repositories

o Branches

o Commits

o Pull Requests

o Git (the version control tool GitHub is built on)

Duration: 6 hrs

Theoretical Activity 1.3.1: Description of GitHub

Tasks:

48 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

2. Benefits of GitHub

GitHub can be separated as the Git and the Hub. GitHub service includes access controls as

well as collaboration features like task management, repository hosting, and team

management.

The key benefits of GitHub are as follows.

o It is easy to contribute to open source projects via GitHub.

o It helps to create an excellent document.

o You can attract the recruiter by showing off your work. If you have a profile on

GitHub, you will have a higher chance of being recruited.

o It allows your work to get out there in front of the public.

o You can track changes in your code across versions.

3. Features of GitHub

GitHub is a place where programmers and designers work together. They collaborate,

contribute, and fix bugs together. It hosts plenty of open source projects and codes of

various programming languages. It is a web-based platform that uses Git, the open-source

version control software, to help developers manage and share their code. Here are some

of its key features:

1. Collaboration

2. Bug tracking

3. Branches

4. Git repositories

5. Project management

6. Team management

7. Code hosting

8. Track and assign tasks

3.1. Collaboration

Collaboration is the process of two or more people, entities or organizations working

together to complete a task or achieve a goal. Collaboration is similar to cooperation

3.2. Integrated issue and bug tracking

Bug and issue tracking systems are often implemented as a part of integrated project

management systems. This approach allows including bug tracking and fixing in a general

product development process, fixing bugs in several product versions, automatic

generation of a product knowledge base and release notes.

3.3. Graphical representation of branches

A branch represents an independent line of development. Branches serve as an abstraction

for the edit/stage/commit process. You can think of them as a way to request a brand new

working directory, staging area, and project history.

3.4. Git repositories hosting

49 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

A Git repository is a central storage location for managing and tracking changes in files and

directories. It is a crucial component of the Git version control system, which enables

collaborative development and allows multiple developers to work on a project

simultaneously.

3.5. Project management

Project management is the application of processes, methods, skills, knowledge and

experience to achieve specific project objectives according to the project acceptance

criteria within agreed parameters. Project management has final deliverables that are

constrained to a finite timescale it achieves by allowing multiple developers to collaborate

and share the tasks which will be merged to produce a full package of project.

3.6. Team management

For each repository that you administer on GitHub, you can see an overview of every team

or person with access to the repository. From the overview, you can also invite new teams

or people, change each team or person's role for the repository, or remove access to the

repository.

3.7. Code hosting

GitHub's code hosting capabilities make it a powerful platform for collaborative software

development, making it easier for developers and teams to work together on code projects,

whether they are open source or private repositories.

3.8. Track and assign tasks

GitHub's "Track and Assign Tasks" feature allows you to keep organized and assign work to

team members. You can create tasks, known as issues, with descriptions and due dates. You

can assign these issues to specific team members who are responsible for them.

Notifications keep everyone in the loop when tasks are assigned or updated. You can use

project boards to visually track task progress. Overall, this feature helps teams stay on top

of their work, delegate responsibilities, and make sure nothing falls through the cracks.

3.9. Conversations

git hub allows different developers to have conversation by allowing them to text each

other a message.

4. GitHub vs. Git

Git is an open-source distributed version control system that is available for everyone at

zero cost. It is designed to handle minor to major projects with speed and efficiency. It is

developed to co-ordinate the work among programmers. The version control allows you to

track and work together with your team members at the same workspace.

While GitHub is an immense platform for code hosting, it supports version controlling and

collaboration. It allows developers to work together on projects.

It offers both distributed version control and source code management (SCM) functionality

of Git. It also facilitates collaboration features such as bug tracking, feature requests, task

management for every project.

50 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

GitHub Git

It is a cloud-based tool developed

around the Git tool.

It is a distributed version control tool that is

used to manage the programmer's source

code history.

It is an online service that is used to

store code and push from the computer

running Git.

Git tool is installed on our local machine for

version controlling and interacting with online

Git service.

It is dedicated to centralize source code

hosting.

It is dedicated to version control and code

sharing.

It is managed through the web. It is a command-line utility tool.

It provides a desktop interface called

GitHub desktop GUI.

The desktop interface of Git is called Git GUI.

It has a built-in user management

feature.

It does not provide any user management

feature

It has a market place for tool

configuration.

It has a minimal tool configuration feature.

5. Git commands related to repository

There are several Git commands related to managing and working with repositories. Here

are some common of these commands:

1. `Git init`: Initializes a new Git repository in the current directory, creating a new `.git`

folder to store version control information.

2. `Git clone <repository-url>`: Creates a local copy of a remote repository. The repository

URL can be obtained from the hosting platform (e.g., GitHub, GitLab).

3. `Git remote add <name> <repository-url>`: Adds a remote repository to your local

repository. The `<name>` is an alias for the remote repository, and the `<repository-url>` is

the URL of the remote repository.

4. `Git remote -v`: Lists the remote repositories associated with your local repository, along

with their URLs.

5. `Git pull <remote> <branch>`: Fetches changes from a remote repository and merges

them into the current branch in your local repository.

6. `Git push <remote> <branch>`: Pushes your local commits to a remote repository. The

`<remote>` is the remote repository alias, and the `<branch>` is the branch name.

51 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

7. ̀ Git branch`: Lists all the branches in your local repository. The current branch is indicated

with an asterisk.

8. `Git branch <branch-name>`: Creates a new branch with the specified name.

9. `Git checkout <branch-name>`: Switches to the specified branch.

10. `Git checkout -b <branch-name>`: Creates a new branch with the specified name and

switches to it.

11. ̀ Git merge <branch-name>`: Merges changes from the specified branch into the current

branch.

12. `Git status`: Shows the current status of your local repository, including modified files,

new files, and branch information.

13. `Git log`: Displays a log of commits in reverse chronological order, showing commit

hashes, authors, dates, and commit messages.

14. `Git add <file>`: Adds a file to the staging area, preparing it for committing.

15. `Git commit -m "<commit-message>"`: Commits the changes in the staging area with a

descriptive commit message.

16. `Git push --tags`: Pushes any tags that have been created to the remote repository.

1: Referring to the previous theoretical activity (1.3.1) you are requested to go to the

computer lab to use GitHub. This task should be done individually.

2: Apply safety precautions.

3: Present out the steps to use GitHub.

4: Referring to the steps provided on task 3, use GitHub.

5: Present your work to the trainer and whole class.

6: Read key reading 1.3.2 and ask clarification where necessary

7: Perform the task provided in application of learning 1.3.2.

Key readings 1.3.2: Creating account and repository on GitHub

1. Create GitHub Account

After installing Git on your machine, the next step is to create a free GitHub account by

following these steps:

Practical Activity 1.3.2: Using GitHub

Task:

52 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

1. Visit the official account creation page by Joining GitHub

2. Pick a username, enter your email address, and choose a password.

3. Opt for or opt out of receiving updates and announcements by checking/unchecking

the Email preferences checkbox.

4. Verify you're not a robot by solving the Captcha puzzle.

5. Click Create account.

6. GitHub sends a launch code to the specified email address. Copy-paste the code in the

designated field.

7. Optionally, enter account personalization details when asked or Skip, and click Continue.

You have now successfully created a GitHub account.

2. Create a Local Git Repository

After installing or updating Git, the next step is to create a local Git repository.

To create a Git repository, follow the steps below:

1. Open a Git Bash terminal and move to the directory where you want to keep the project

https://github.com/join

53 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

on your local machine. For example:

cd ~/Desktop

mkdir myproject

cd myproject/

In this example, we changed the directory to Desktop and created a subdirectory

called myproject.

2. Create a Git repository in the selected folder by running the git init command. The syntax

is:

git init [repository-name]

Now you have successfully created a local Git repository.

3. Create New Repository on GitHub

GitHub allows you to keep track of your code when you're working with a team and need

to modify the project's code collaboratively.

Follow these steps to create a new repository on GitHub:

1. Log in and browse to the GitHub home page.

2. Find the New repository option under the + sign next to your profile picture, in the top

right corner.

54 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

3. Enter a name for your repository, provide a brief description, and choose a privacy

setting.

4. Click the Create repository button.

GitHub allows you to add an existing repo you have created locally.

4.Git commands related to repository

1. git init: Initializes a new Git repository in the current directory.

Example:

$ git init

2. git clone <repository>: Creates a copy of a remote repository on your local machine.

Example:

$ git clone https://github.com/user/repository.git

3. git remote add <name> <url>: Adds a remote repository to your local repository.

Example:

$ git remote add origin https://github.com/user/repository.git

4. git remote remove <name>: Removes a remote repository from your local

repository.

Example:

55 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

$ git remote remove origin

5. git remote -v: Lists the remote repositories associated with your local repository.

Example:

$ git remote -v

6. git fetch <remote>: Fetches the latest changes from a remote repository without

merging them.

Example:

$ git fetch origin

7. git pull <remote> <branch>: Fetches the latest changes from a remote repository

and merges them into the current branch.

Example:

$ git pull origin main

8. git push <remote> <branch>: Pushes your local changes to a remote repository.

Example:

$ git push origin main

9. git branch: Lists all the branches in your repository.

Example:

$ git branch

10. git branch <branch_name>: Creates a new branch in your repository.

Example:

$ git branch new-feature

11. git checkout <branch>: Switches to an existing branch in your repository.

Example:

$ git checkout main

12. git checkout -b <branch_name>: Creates and switches to a new branch in your

repository.

Example:

56 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

$ git checkout -b new-feature

13. git merge <branch>: Merges a branch into the current branch.

Example:

$ git merge feature-branch

14. git add <file>: Adds a file to the staging area to be included in the next commit.

Example:

$ git add myfile.txt

15. git commit -m "<message>": Commits the changes in the staging area with a

descriptive message.

Example:

$ git commit -m "Fix bug #123"

16. git log: Displays a log of commits in reverse chronological order.

Example:

$ git log

17. git status: Shows the current state of your repository, including any untracked,

modified, or staged files.

Example:

$ git status

18. git diff: Shows the differences between the working directory and the staging area.

Example:

$ git diff

Steps to follow when performing git-config command

1. Open a terminal or command prompt

2. Check existing configurations (optional):

3. Set global or local configurations

4. Modify existing configurations

5. Remove configurations

57 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

6. Confirm configurations

Steps to perform git commands related to repository:

1. Git Clone

1. Open Terminal or Command Prompt: Open the Terminal (on macOS and Linux) or

Command Prompt (on Windows) on your computer. This will be the interface where you'll

enter Git commands.

2. Navigate to the Desired Directory: Use the `cd` command to navigate to the directory

where you want to clone the repository. For example, if you want to clone the repository

into the "Documents" folder, use the following command:

 cd Documents

3. Clone the Repository: Use the ̀ git clone` command followed by the URL of the repository

you want to clone. The URL can be obtained from the repository's GitHub page. For

example, if the repository URL is `https://github.com/username/repository.git`, use the

following command:

 git clone https://github.com/username/repository.git

4. Provide Credentials (if required): If the repository is private and requires authentication,

Git may prompt you to enter your GitHub username and password or access token. Enter

the required credentials to proceed with the cloning process.

5. Wait for Cloning to Complete: Git will begin cloning the repository into the current

directory.

2. Git Remote

To apply Git commands related to remote repositories, such as `git remote`, follow these

steps:

1. Navigate to the Local Repository: Open the Terminal or Command Prompt and navigate

to the directory of your local Git repository using the `cd` command.

2. Check Existing Remotes: To see the list of existing remote repositories associated with

your local repository, use the `git remote` command. This will display the names of the

remote repositories. For example: git remote

3. Add a Remote: To add a new remote repository, use the `git remote add` command

followed by a name and the URL of the remote repository. The name can be anything you

choose, and the URL should be the address of the remote repository. For example:

 git remote add origin https://github.com/username/repository.git

 In this example, `origin` is the name given to the remote repository, but you can choose

58 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

a different name if you prefer.

4. Rename a Remote: If you want to rename an existing remote repository, use the `git

remote rename` command followed by the current name and the new name. For example,

to rename the remote repository from ̀ origin` to ̀ new-origin`, use the following command:

 git remote rename origin new-origin

5. Remove a Remote: If you want to remove an existing remote repository, use the `git

remote remove` command followed by the name of the remote repository. For example,

to remove the remote repository named `origin`, use the following command:

 git remote remove origin

6. Get Detailed Information: To get more detailed information about a specific remote

repository, use the `git remote show` command followed by the name of the remote

repository. For example, to get detailed information about the remote repository named

`origin`, use the following command: git remote show origin

● GitHub, widely used platform for software development and collaboration, offers a r

ange of features that facilitate version control, project management, code sharing, a

nd team collaboration. There are some key features of GitHub including: Collaboratio

n, Integrated issue and bug tracking, Graphical representation of branches, Git reposi

tories hosting, Project management, Team management.

● GitHub accounts are user profiles on the GitHub platform that provide individuals an

d organizations with access to various features and functionalities for managing and

collaborating on software projects.

● To use GitHub effectively, follow these steps:

1. Create GitHub account

2. Create repository in your account

3. Perform git-config command

4. Perform git commands related to repository

Points to Remember

59 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Alex, a software developer, is starting a new project to build a personal finance tracking

application. Alex wants to use GitHub to manage the project's version control and collaborate

with other developers. How Alex goes through the process to perform these tasks:

1. Set Up the Project Directory

2. Initialize Git Repository

3. Create a GitHub Repository

4. Link Local Repository to GitHub

5. Add Initial Files

6. Push to GitHub

7. Collaborate with Other Developers

Application of learning 1.3.

60 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

 Learning outcome 1 end assessment

1. Read the Following statement and answer by true if correct or false otherwise

Version control systems (VCS), including distributed versions like Git, are essential tools in

software development that enable tracking changes over time, facilitate collaboration, and

maintain a comprehensive version history. Through concepts like branching and merging,

developers can work on separate features or fixes independently and later integrate them

into the main codebase. Key commands like git pull to fetch and merge changes, git status to

view repository state, and git branch to manage branches, all contribute to efficient project

management by providing snapshots of the project at specific points and allowing seamless

collaboration.

a. Version control systems (VCS) track changes to files over time, enabling collaboration

and version history.

b. Distributed version control systems (DVCS) allow each user to have a complete copy

of the repository with its full history.

c. Branching in version control allows developers to work on separate features or fixes

without interfering with the main codebase.

d. Merging in version control combines changes from one branch or fork into another,

integrating separate lines of development.

e. Commits in version control systems are snapshots of the entire project at a specific

point in time, including all tracked files.

f. git pull fetches changes from a remote repository and merges them into the local

repository.

g. git status displays information about the current state of the repository, such as

modified files and branch status.

h. git branch is used to create, list, delete, or manipulate branches in a Git repository.

Theoretical assessment

61 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

2. Match Git commands with its corresponding description

3.Read the following sentences and Fill the gap with the missing word.

1. The command git __________ is used to create a new branch in Git.

2. A Git __________ is a pointer to a specific commit in the repository's history.

3. git checkout __________ is used to switch between branches in Git.

4. To list all branches in a Git repository, you can use git branch __________.

5. A Git __________ is a copy of a repository that lives on your computer instead of on a

website's server.

6. git merge __________ is used to integrate changes from one branch into another.

7. git remote __________ is used to manage connections to remote repositories.

8. git push origin __________ is used to push the changes of the current branch to a

remote repository.

9. A centralized version control system offers ………………………….a way to collaborate

using a central server.

10. Distributed version control system allows ………………… management branching and

merging.

4 . Read this statement and answer by true if correct or false otherwise

Git Bash is a command-line interface for interacting with Git, a version control system. The git

init command initializes a new, empty repository, while git clone is used to clone an existing

remote repository. The git status command shows the state of the working directory,

including untracked files, and git version displays the installed Git version.

Command Description

Git Commit 1. Manages connections to remote repositories.

Git Clone 2. Copies a repository from a remote source to your local machine.

Git Push 3. Fetches and merges changes from a remote repository to your local

repository.

Git Pull 4.Removes files from the working directory and stages the removal for

the next commit

Git Remote 4.Records changes to the repository

Git Status 5. Uploads local repository content to a remote repository.

Git Config 6. Sets configuration options for Git on your local machine.

Git rm 7.Shows the current state of the repository, including tracked/untracked

files and changes

62 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

a) Git bash is one among version control system that exist

b) Git init is used to clone remote repository

c) Git status is used to initialize an empty repository

d) In git you can view untracked files by using git version command

Mugabe XY holds the position of Senior Developer at Innovate Company Ltd, situated in

Ruhango District. He has delegated a project to four developers, tasking them with designing

a web application featuring various forms: login, student registration, course registration, and

book registration, all using HTML. However, due to geographical constraints and other

commitments, the developers found it challenging to collaborate effectively on the project.

Consequently, the Senior Developer opted to assign tasks to each developer individually and

remotely, recommending them to work autonomously on their designated tasks by referring

to this repository structure.

├── login.html

├── student_registration.html

├── course_registration.html

├── book_registration.html

├── README.md

└── .gitignore

As one of the developers at the company, you have been assigned the following task:

Create a remote repository on GitHub using your full name as the repository name.

Clone the repository to your local computer.

Within the repository, create the required forms mentioned above for subsequent commits.

Practical assessment

63 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

References

JavaTpoint. (n.d.). Git Version Control System. Retrieved from

https://www.javatpoint.com/git-version-control-system

JavaTpoint. (n.d.). IntelliJ IDEA Version Control. Retrieved from

https://www.javatpoint.com/intellij-idea-version-control

Red Hat Developers. (2023, August 2). Beginner's guide to Git version control. Retrieved from

https://developers.redhat.com/articles/2023/08/02/beginners-guide-git-version-control#

JavaTpoint. (n.d.). Git. Retrieved from https://www.javatpoint.com/git

JavaTpoint. (n.d.). How to Install Git on Windows. Retrieved from

https://www.javatpoint.com/how-to-install-git-on-windows

TutorialsPoint. (n.d.). Git Environment. Retrieved from

https://www.tutorialspoint.com/git/git_environment.htm

JavaTpoint. (n.d.). GitHub. Retrieved from https://www.javatpoint.com/github

https://www.javatpoint.com/git-version-control-system
https://www.javatpoint.com/intellij-idea-version-control
https://developers.redhat.com/articles/2023/08/02/beginners-guide-git-version-control
https://www.javatpoint.com/git
https://www.javatpoint.com/how-to-install-git-on-windows
https://www.tutorialspoint.com/git/git_environment.htm
https://www.javatpoint.com/github

64 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Learning Outcome 2: Manipulate Files

65 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Indicative contents

2.1: Adding file change to Git staging area

2.2: Commit file changes to Git local repository and manage branches

Key Competencies for Learning Outcome 2: Manipulate files

Knowledge Skills Attitudes

• Description of git status

command

• Description of git

commands operations

• Description of commit

message

• Introduction of branches

operations

• Applying git status

commands

• Performing Operation

on git add command

• Using staging area

• Performing File

management

commands

• Applying git commit

command

• Applying Operations

on git branches

• Adding file change to

git staging area

• Being Adaptability

• Being Practical

oriented

• Have Communication

skills

• Have Creativity

• Have critical thinking

• Being Problem solver

• Have Team work

Duration:20 hrs

Learning outcome 2 objectives:

By the end of the learning outcome, the trainees will be able to:

1. Describe clearly git status command based on git command.

2. Describe properly git command operations based on the project requirements

3. Introduce clearly operations on branches based on project requirements.

4. Add correctly file change to git staging area based on operations.

5. Apply correctly git commit command based on project content

6. Performing properly file management commands based on project requirements.

Apply clearly operations on branches based on project standard .

Resources

66 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Equipment Tools Materials

● Computer ● Git

● GitHub

● Text editor (vs code)

● Terminal (CMD,

Gitbash).

● Internet

● Electricity

67 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Indicative content 2.1: Add file change to Git staging area

1. In small groups, you are requested to answer the following questions related to the

staging area:

I. Describe the operations of these commands:

• git status command

• git add command

• git reset command

• Rm command

2. Participate in group formulation

3. Present your findings to your classmates and trainer

4. For more clarification, read the key readings 2.1.1. In addition, ask questions where

necessary.

Key readings 2.1.1.: Description of staging area

1. The staging area

In Git, staging area also known as the index, is a crucial intermediate step in the Git

workflow that allows users to prepare and organize changes before committing

them to the repository. When modifications are made to files in the working

directory, the staging area acts as a holding area where users can selectively choose

which changes to include in the next commit. By using the `git add` command, users

can move specific changes from the working directory to the staging area,

effectively staging them for the next commit. This process enables users to review,

fine-tune, and organize their changes before creating a commit, promoting a

structured and controlled approach to version control.

2. Git status command

2.1 Definition of git status command

The "git status" command is a command used in the Git version control system to

displays information about the current state of the repository, such as the status of

tracked and untracked files, the branch being worked on, and any changes that have

been made.

Mostly, it is used to display the state between Git Add and Git commit command.

We can check whether the changes and files are tracked or not.

Duration:10 hrs

hrs

Theoretical Activity 2.1.1: Description of staging area

Tasks:

https://www.javatpoint.com/git-add
https://www.javatpoint.com/git-commit

68 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

2.2 Operations on git status command

1. View new untracked files:

 When you run `git status`, it will display a section titled "Untracked files" that lists

any new files in your working directory that Git is not currently tracking. These files

have not been staged or included in any previous commits. It provides you with a

list of files that you may want to consider adding to your repository.

2. View modified files:

 In the "Changes not staged for commit" section of the `git status` output, you will

see a list of modified files in your working directory that have not been staged.

These files have changes compared to the last commit. Git will show you the names

of the modified files so that you can review the changes made to them.

3. View deleted files:

 Similarly, in the "Changes not staged for commit" section, `git status` will also

display any deleted files that have not been staged. These are files that were

present in the last commit but have been deleted in your working directory since

then. Git will show you the names of the deleted files, allowing you to review the

deletions.

 The git add command is used to add changes or new files to the staging area in Git.

It prepares the changes or files to be included in the next commit.

3. Git add command

3.1 Definition of git add command

The "git add" command is used in Git to add changes or new files to the staging

area. The staging area is a temporary storage space where you can gather and

prepare changes before committing them to the Git repository.

It tells Git that you want to include updates to a particular file in the next commit.

However, git add doesn't really affect the repository in any significant way changes

are not actually recorded until you run git commit.

Here are a few common usages of the "git add" command:

Adding specific files: You can add specific files to the staging area by specifying their

names or paths. For example, to add a file named "example.txt", you would run:

git add example.txt

Adding all changes: You can add all modified and new files in the current directory

and its subdirectories to the staging area using the following command:

git add

Adding changes interactively: Git provides an interactive mode for selectively

staging changes. You can use the following command to launch the interactive

mode:

git add -i

This allows you to choose which changes to add by selecting them from a menu.

69 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

After using the "git add" command, the changes or files you specified will be moved

to the staging area. You can then review the changes using "git status" and proceed

with committing them using the "git commit" command.

The git add command is used to add file contents to the Index (Staging Area).This

command updates the current content of the working tree to the staging area. It

also prepares the staged content for the next commit. Every time we add or update

any file in our project, it is required to forward updates to the staging area.

3.2 Operations on git add command

1. Stage all files:

When you use the `git add .` command, Git scans the current directory and its

subdirectories, identifying any modified and new files. It adds these files to the

staging area, which is a space where you can prepare your changes for the next

commit.

By staging all files, you are telling Git to include all modifications and additions made

to the files in the next commit. This operation allows you to commit all changes

made to your project at once, without having to specify individual files.

2. Stage a file:

When you use the ̀ git add <file>` command, Git adds the specified file to the staging

area. This means that Git records the current state of the file, including any

modifications you made to it since the last commit.

Staging a file allows you to selectively include changes from specific files in your

commits. It helps you organize your commits by grouping related changes together.

Only the staged files will be included in the next commit when you run `git commit`.

3. Stage a folder:

Git does not have a direct command to stage a folder. However, when you use the

`git add <folder>` command, Git scans the specified folder and its subdirectories. It

identifies any modified and new files within the folder and adds them to the staging

area.

Staging a folder allows you to include changes from multiple files within a specific

directory in a single commit. It provides a convenient way to organize your changes

when you have made modifications to multiple files within a folder.

In summary, staging files using the `git add` command allows you to prepare your

changes for the next commit. By staging files, you are telling Git to include those

changes in the commit, making them a part of your project's history. Whether you

stage all files, a specific file, or a folder, it helps you manage and organize your

changes effectively before committing them to your repository.

4. Git reset command

4.1 Definition of git reset command

https://www.javatpoint.com/git-index

70 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

The "git reset" command is used in Git to move the HEAD and branch pointer to a

specific commit or to unstage changes. It allows you to manipulate the commit

history and the staging area. The behavior of "git reset" varies depending on the

options and arguments used.

Here are a few common usages of the "git reset" command:

1. Resetting the HEAD and branch pointer: You can move the branch pointer and the

HEAD to a specific commit, effectively discarding commits. For example, to reset the

branch pointer to a commit identified by its SHA-1 hash, you would run:

git reset <commit-SHA>

 By default, "git reset" moves the branch pointer to the specified commit and

leaves the changes made in the discarded commits as uncommitted modifications.

2. Unstaging changes: If you have added changes to the staging area using "git add"

and you want to remove them from the staging area, you can use the "--mixed"

option with "git reset". This option is the default behavior if you don't specify any

mode. For example: git reset HEAD

This command moves the changes from the staging area back to the working

directory, leaving the commit history and working directory unchanged.

3. Discarding changes: To completely discard changes in both the working directory

and the staging area, you can use the "--hard" option with "git reset". For example:

git reset --hard HEAD

This command resets the branch pointer, the staging area, and the working

directory to the specified commit, effectively discarding all changes made after that

commit.

It's important to note that the "git reset" command modifies the commit history, so

caution should be exercised when using it. It's recommended to create a backup or

ensure that you have a clear understanding of the consequences before using it.

4.2 Operations on git reset command

1. Unstage a file:

 When you want to remove a file from the staging area without discarding the

changes made to that file, you can use the `git reset` command. Specifically, the `git

reset <file>` command allows you to unstage a specific file.

 By running ̀ git reset <file>`, Git moves the specified file from the staging area back

to the working directory. This means that the file is no longer marked for the next

commit. However, the changes made to the file are preserved, allowing you to make

further modifications or stage it again later if needed.

Unstaging a file with ̀ git reset` provides flexibility in managing your staged changes,

allowing you to selectively remove files from the staging area while retaining the

modifications made to them.

71 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

2. Deleting and staging a folder:

Git does not have a direct command to delete or stage a folder. However, you can

achieve the desired effect by combining different Git commands, including `git

reset`.

To delete a folder and stage the deletion, you can follow these steps:

1. Use the `git rm -r <folder>` command to recursively remove the folder and its

contents from both the working directory and the Git repository. This permanently

deletes the folder and its files.

2. Run `git reset` to unstage the deletion. For example, `git reset <folder>` or `git

reset .` (to unstage all changes).

3. At this point, the folder deletion is unstaged, and the folder and its contents still

exist in your working directory. You can choose to commit the deletion or make

further modifications before committing.

 By combining ̀ git rm -r` and ̀ git reset`, you can effectively delete a folder and stage

the deletion, providing control over the removal of folders from your repository.

Using the `git reset` command with these operations allows you to unstage files

from the staging area while preserving their changes and delete folders from the

repository while having the option to modify or stage them again before

committing. It offers flexibility in managing your staging and deletion actions within

Git.

5. Rm command

5.1 Definition of rm command

The "git rm" command is used in Git to remove files from the Git repository. It is

primarily used to delete files that are tracked by Git and stage the deletion for the

next commit.

Here are a few common usages of the "git rm" command:

1. Removing a file from the repository: You can use the following command to remove

a file from the Git repository and stage the deletion: git rm <file>

Replace <file> with the name or path of the file you want to remove. This command

not only removes the file from the current working directory but also stages the

deletion for the next commit.

2. Removing a file from the repository without deleting it locally: If you want to

remove a file from the Git repository but keep it in your local working directory, you

can use the "--cached" option with "git rm". For example: git rm --cached <file>

This command removes the file from the repository but leaves it intact in your local

working directory. The file will be untracked, and future changes to the file will not

be tracked by Git.

72 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

3. Removing multiple files or using shell patterns: You can use shell patterns or specify

multiple files to remove multiple files at once. For example:

git rm *.txt

This command removes all files with the ".txt" extension from the repository and

stages the deletions.

After using the "git rm" command, the file(s) will be removed from the repository,

and you will need to commit the changes using "git commit" to make the deletion

permanent in the Git history.

5.2 Operations on rm command

1. Remove and stage a file:

The `git rm` command allows you to remove a file from both your working directory

and the Git repository, while also staging the removal. When you run the following

command:

git rm <file>

Replace `<file>` with the name or path of the file you want to remove.

 This operation removes the specified file from your working directory and stages

the removal, which means that the file will be marked for deletion in the next

commit. The file will no longer be present in your repository or working directory

after you commit the changes.

Removing and staging a file using `git rm` is useful when you want to permanently

delete a file from your project and include the deletion in the commit history.

 2. Remove and stage a folder:

Git does not have a direct command to remove and stage a folder. However, you

can achieve the desired effect by combining different Git commands, including the

`git rm` command.

To remove and stage a folder, you can follow these steps:

1. Use a file system command (e.g., `rm -r` on Unix-like systems or `rd /s /q` on

Windows) to remove the folder and its contents from your working directory.

2. Run `git rm -r --cached <folder>` to stage the removal of the folder:

 git rm -r --cached <folder>

 Replace `<folder>` with the name or path of the folder you want to remove.

 This command removes the specified folder from the Git repository and stages

the removal. The `--cached` flag ensures that the folder is only removed from the

Git repository, not from your working directory.

73 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

1: Read key reading 2.1.2 and ask clarification where necessary

2: Referring to the previous theoretical activity (2.1.1) you are requested to go to the

computer lab to add file change to git staging area. This task should be done individually.

3: Apply safety precautions.

4: Present out the steps to add file change to git staging area.

5: Referring to the steps provided on task 3, add file change to git staging area

6: Present your work to the trainer and whole class

Key readings 2.1.2: Applying Git commands to change files

1. Adding file change to staging area.

To add file changes to the Git staging area, follow these steps:

1. Check the Status:

- Before adding file changes, check the status of your repository using `git status` to

see which files have been modified.

2. Add Changes:

- Use the `git add` command followed by the filename to stage specific changes. For

example, to stage a single file, use `git add <filename>`.

3. Stage All Changes:

- To stage all changes in the working directory, you can use `git add ` to add all

modified files or `git add --all` to include all changes, including deleted files.

4. Review Staged Changes:

- Verify the changes staged for commit by running `git status` again. The staged

changes will be listed under "Changes to be committed."

5. Commit Staged Changes:

- Once the desired changes are staged, commit them to the repository using `git

commit -m "Your commit message"` to create a new commit with the staged

modifications.

2. Operations on git status command

2.1 View new untracked file

 To view new untracked files in Git, you can use the `git status` command. Here are

the steps to do it practically:

1. Open your terminal or command prompt.

Practical Activity 2.1.2: Adding file change to Git staging area

Task:

74 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

2. Navigate to the root directory of your Git repository using the `cd` command. For

example:

cd /path/to/your/repository

3. Run the `git status` command:

git status

This command will display the current status of your repository, including any

untracked files.

4. Look for the section labeled "Untracked files". It will list all the files in your working

directory that are not tracked by Git.

For example:

Untracked files:

 (use "git add <file>..." to include in what will be committed)

new_file.txt

In this example, `new_file.txt` is an untracked file.

By running `git status`, you can easily see the list of untracked files in your repository.

This helps you identify any new files that Git is not currently tracking. If you want to

include these untracked files in your Git repository, you can use the `git add`

command to stage them for the next commit.

Example2 that show the case

From that image before, there is no untracked files

Let us create a file called “studentregistration.html” inside our repository by using

touch Flile name

Then after run git status and see what happen

75 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

For that case it displays studentregistration.html is under untracked becouse it has

been created but not staged means that it is under working stage.

2.2 View modified file

Let's assume you have a Git repository with some files, and you have made changes

to one of the files. Follow these steps to view the modified file:

1. Open your terminal or command prompt.

2. Navigate to the root directory of your Git repository using the `cd` command. For

example: cd /path/to/your/repository

3. Run the `git status` command:

This command will display the current status of your repository, including any

modified files.

4. Look for the section labeled "Changes not staged for commit". It will list all the

modified files in your working directory.

For example:

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

modified: file.txt

In this example, `file.txt` is the modified file.

By running `git status`, you can easily identify the modified file in your repository. Git

will display the file name and indicate that it has been modified. This allows you to

keep track of changes made to your files and helps you decide how to proceed, such

as staging the modifications for the next commit using the `git add` command

All modified files or changed files are viewed by using Git status

2.3 View deleted file

To view deleted files in Git, you can use the `git status` command. Here's a clear

example of how to do it practically:

Assuming you have a Git repository and you have deleted a file. Follow these steps

to view the deleted file:

1. Open your terminal or command prompt.

2. Navigate to the root directory of your Git repository using the `cd` command. For

example:

76 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

cd /path/to/your/repository

3. Run the `git status` command:

git status

This command will display the current status of your repository, including any deleted

files.

4. Look for the section labeled "Changes not staged for commit". It will list all the

deleted files in your working directory.

For example:

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

deleted: deleted_file.txt

In this example, `deleted_file.txt` is the deleted file.

By running `git status`, you can easily identify the deleted file in your repository. Git

will display the file name and indicate that it has been deleted. This helps you keep

track of the changes made to your files and allows you to decide how to proceed,

such as committing the deletion using the appropriate Git command.

 Remember that to delete a file you use git rm <filename> once you have deleted a

file in git you can view them by using Git status.

3.Operation on git add command

3.1 Stage all files

Git add files

Git add command is a straight forward command. It adds files to the staging area. We

can add single or multiple files at once in the staging area. It will be run as:

$ git add <File name>

The above command is added to the git staging area, but yet it cannot be shared on

the version control system. A commit operation is needed to share it. Let's

understand the below scenario.

We have created a file for our newly created repository in NewDirectory. To create

a file, use the touch command as follows:

$ touch newfile.txt

77 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

And check the status whether it is untracked or not by git status command as follows:

$ git status

The above command will display the untracked files from the repository. These files

can be added to our repository. As we know we have created a newfile.txt, so to add

this file, run the below command:

$ git add newfile.txt

Consider the below output:

From the above output, we can see newfile.txt has been added to our repository.

Now, we have to commit it to share on Git.

3.2 Git Add All

We can add more than one files in Git, but we have to run the add command

repeatedly. Git facilitates us with a unique option of the add command by which we

can add all the available files at once. To add all the files from the repository, run the

add command with -A option. We can use '.' Instead of -A option. This command will

stage all the files at a time. It will run as follows:

$ git add -A

Or

$ git add .

The above command will add all the files available in the repository. Consider the

below scenario:

We can either create four new files, or we can copy it, and then we add all these files

at once. Consider the below output:

78 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

In the above output, all the files are displaying as untracked files by Git. To track all

of these files at once, run the below command:

$ git add -A

The above command will add all the files to the staging area. Remember, the -A

option is case sensitive. Consider the below output:

In the above output, all the files have been added. The status of all files is displaying

as staged.

3.3 Adding all files by extension

79 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

In some cases, you may be interested in adding all files that have a specific extension:

*.txt or *.js for example.

To add all files having a specific extension, you have to use the “git add” command

followed by a wildcard and the extension to add.

$ git add *.txt

$ git add *.js

As an example, let’s say that you have created two Javascript files and one text file.

In order to add all Javascript files, we are going to use the wildcard syntax followed

by “*.js”.

$ git add *.js

Using dot with git add

the “.” symbol stands for “current directory “

As a consequence, if you don’t use it at the top of your project hierarchy, you will

only add files in the current working directory.

To illustrate this concept, let’s say that you have two new files: “root-file” in your

project top folder and “new-file” in a folder named “folder”.

https://www.computerhope.com/jargon/w/wildcard.htm

80 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

If you navigate to your new folder and execute the “git add” command with the dot

syntax, you will notice that you only add files located in this directory.

$ cd folder

$ git add

As a consequence, you might miss some of your files in your commit.

To avoid this problem, you can use the dot syntax combined with the absolute path

to your project top folder.

$ git add <path>/.

3.4 Stage a file

The operation of staging a file using the "git add" command allows you to selectively

include changes made to a specific file in the staging area. To stage a file, you specify

the path to that file as an argument to the "git add" command. For example:

git add path/to/file.txt

This command stages the changes made to the "file.txt" file, enabling you to include

those changes in the next commit. Staging a file individually allows you to isolate and

commit specific modifications without affecting other files in your working directory.

Before staging a file, you have to check all existing files and unstagged files for existing

files you use ls command.

Remember that git add is used once moving a file from workspace to stagging area.

For stagging a single file use git add filename.extension

For file extension use .html, .doc, .js, and others.

81 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Example: git add index.html that command will add the index file to stagging area as

shown on that image.

Once you want to stage all unstaged files at the sametime you write git add . or git

add A

3.5 Stage folder

The operation of staging a folder using the "git add" command enables you to include

changes made to multiple files within a directory and its subdirectories in the staging

area. By executing the command:

git add path/to/folder/

To stage a folder in Git, you can use the `git add` command with the folder's path.

Here's how you can do it practically:

1. Open your terminal or command prompt.

2. Navigate to the root directory of your Git repository using the `cd` command. For

example:

 cd /path/to/your/repository

3. Run the following command to stage a folder:

 git add <folder>

 Replace `<folder>` with the name or path of the folder you want to stage.

 For example, if you want to stage a folder named "myfolder", the command would

be:

 git add myfolder

 This command stages the specified folder and all its contents for the next commit.

4. Verify the staged changes by running the `git status` command:

 git status

 You will see that the folder and its contents are now staged for the next commit.

 For example:

Changes to be committed:

(use "git restore --staged <file>..." to unstage)

new file: myfolder/file1.txt

modified: myfolder/file2.js

deleted: myfolder/file3.html

By using `git add <folder>`, you can stage a specific folder and its contents in your

repository. This allows you to include all changes within that folder in a single commit.

82 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Remember to review the changes and commit them using the appropriate Git

command when you are ready.

4. Operations on git reset command

Git Reset

Figure 10: Git Reset diagram

The git reset command is used to undo the changes in your working directory and get

back to a specific commit while discarding all the commits made after that one.

For instance, imagine you made ten commits. Using git reset on the first commit will

remove all nine commits, taking you back to the first commit stage.

Before using git reset, it is important to consider the type of changes you plan to

make; otherwise, you will create more chaos than good.

git reset repositoryName

The default option is git reset --mixed, which updates the current branch tip and

moves anything in the staging area back to the working directory. We'll take a closer

look at all three, but first let's create a basic Git repo with the following structure and

show a simple git reset command in action:

git-reset-repositoryName/

file1.ext

dir1/

dir1file1.ext

Assuming we have already made our initial commit, let's add some text to file1.ext

and dir1file1.ext and stage and commit them both in separate commits.

Next, let's make one more change to file1.ext and only stage the changes (but not

commit), then we'll run a git log followed by a git status to check out the state of

things:

$ git log --oneline

d66f707 (HEAD -> master) Change 2

32c2d09 Change 1

38e2a6e Initial commit

https://www.initialcommit.com/blog/What-Is-An-Initial-Commit-In-Git

83 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Next let's run git status:

$ git status

On branch master

Changes to be committed:

(use "git restore --staged <file>..." to unstage)

modified: file1.ext

As we can see from our output, we have a commit history reflecting three commits,

along with one staged file sitting in the staging index. Note that git diff can also be

useful to check the state of things. Let's run a basic git reset command and check our

log and status once more:

$ git reset

Unstaged changes after reset:

M file1.ext

$ git log --oneline

d66f707 (HEAD -> master) Change 2

32c2d09 Change 1

38e2a6e Initial commit

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

modified: file1.ext

 no changes added to commit (use "git add" and/or "git commit -a")

A quick glance at the output tells us that a basic git reset without a specific commit

parameter left the commit history unchanged, while unstaging our modified file and

moving it back to the working directory.

It's important to note that our changes still exist, as the working directory was left

untouched. Git reset merely moved the change out of the staging area because it

defaults to the --mixed option, in contrast with --hard which will wipe out the changes

in the working directory as well.

4.1 Unstage a file

In Git, to unstage a file that you've previously added to the staging area, you can use

the "git reset" command. Here's how you can do it:

1. First, ensure you are in the root directory of your Git repository.

2. To check the status of your repository and see which files are staged and unstaged,

use the following command:

git status

https://www.initialcommit.com/blog/git-diff

84 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

3. If you see the file you want to unstage under the "Changes to be committed" section

(staged changes), you can unstage it using the following command:

git reset HEAD <file>

For example, if you want to unstage a file named "example.txt," you would run:

git reset HEAD example.txt

This command moves the changes from the staging area back to the working

directory, effectively "unstaging" the file.

4. After unstaging the file, you can verify its status using git status again.

Example:

4.2 Deleting and staging file/folder

Deleting and staging a file/folder involves two separate steps: deleting the file/folder

from your working directory and then staging the deletion for the next commit.

Here's how you can do it:

1. To delete a file from your working directory, you can use the standard file system

command, such as rm on Unix-based systems or del on Windows. For example, to

delete a file named "example.txt"

on Unix: rm example.txt

On Windows: del example.txt

Alternatively, you can use the Git command to delete the file, which will both remove

it from the working directory and stage the deletion:

git rm <file>

For example:

git rm example.txt

2. After deleting the file, it is removed from the working directory, but its deletion is not

yet committed. To stage the deletion for the next commit, you need to run:

git add <file>

For example:

git add example.txt

3. At this point, the file deletion is staged and will be part of the next commit. To

complete the process, commit the changes:

git commit -m "Deleted example.txt"

Replace the commit message with an appropriate message for your changes.

Please note that the git rm command is used to delete a file from both the working

directory and the repository. If you want to keep the file in your working directory

but remove it from the repository (staged deletion), you can use the git rm --cached

<file> command instead of git rm <file>.

5. Operations on rm command

5.1 Remove and Stage a File:

1. First, ensure you are in the root directory of your Git repository.

85 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

2. To remove the file from both the working directory and the repository (staged

deletion), use the following command:

git rm <file>

For example, if you want to remove a file named "example.txt":

 git rm example.txt

3. After running the git rm command, the file is removed from the working directory

and staged for deletion. To complete the process, commit the changes:

 git commit -m "Deleted example.txt"

Replace the commit message with an appropriate message for your changes.

5.2 Remove and Stage a Folder (Directory):

1. First, ensure you are in the root directory of your Git repository.

2. To remove the folder and its contents from both the working directory and the

repository (staged deletion), use the following command:

 git rm -r <folder>

For example, if you want to remove a folder named "examples":

 git rm -r examples

The -r flag tells Git to recursively remove the directory and its contents.

3. After running the git rm -r command, the folder and its contents are removed from

the working directory and staged for deletion. To complete the process, commit the

changes:

git commit -m "Deleted 'examples' folder"

Replace the commit message with an appropriate message for your changes.

Remember that once you've committed the changes, they become a part of your Git

history, and you won't be able to recover the deleted files or folders easily. So, use

these commands with caution and make sure you have a backup if needed.

● Git status is a useful command in Git that provides information about the current state

of the repository and helps users track changes to files. There are operations related

to `git status` including: View new untracked files, View modified files, View deleted

files.

● The `git add` operation in Git is a fundamental command used to stage changes in a

repository, preparing them to be included in the next commit. There are operations

related to the `git add` command including: Stage all files, Stage a file, Stage a folder.

● To add file changes to the Git staging area, follow these steps:

1. Check the Status

2. Add Changes

3. Stage All Changes

 Points to Remember

86 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

4. Review Staged Changes

5. Commit Staged Changes

You are a software developer working on a coding project, who utilize Git for version control.

While adding a new feature to the project, you need to create a file called "feature.html" and

made modifications to an existing file called "main.html". To be sure that the previous tasks

are performed well you can also review the changes before committing them. Using Git, check

the status of your project with "git status" and identify the "feature.html" file as untracked,

and "main.html" as modified. Use “git diff main.html" to view the differences in "main.html".

During this process, you discover an unnecessary file and deleted it.

Application of learning 2.1.

87 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Indicative content 2.2: Commit File changes to git local repository

and manage branch

1. In small groups, you are requested to answer the following questions related to the

commit file change to git:

I. What do you understand about commit message?

II. What are the best practices for creating a commit message, operations related

to git log?

III. Can you explain the operations involved in the `git commit` command in Git?

2. Participate in group formulation

3. Present your findings to your classmates and trainer

4. For more clarification, read the key readings 2.2.1. In addition, ask questions where

necessary.

Key readings 2.1.1.: Description of commit file change

1. Definition of Commit message

In Git, a commit message is a brief description that explains the changes made in a

particular commit. When you make changes to files in your Git repository and are ready to

save those changes as a new version, you create a commit. Each commit represents a

snapshot of the changes you've made to the files at a specific point in time.

The commit message serves to document the purpose and context of the changes made in

that commit. It helps other developers (including your future self) to understand the

reasons for the changes and the intention behind them. Writing clear and descriptive

commit messages is a best practice in software development, as it promotes collaboration

and makes it easier to navigate through the project history.

A typical commit message includes the following components:

1. Summary line: A concise, one-line description of the changes made in the commit.

This summary line is usually limited to around 50 characters and ends with a period.

2. Description (optional): A more detailed explanation of the changes. This part is not

mandatory, but it can be helpful for providing additional context and details about

the commit.

Here's an example of a commit message:

Fix issue with login validation

Duration: 10hrs

 ● Theoretical Activity 2.2.1: Introduction of commit file change to git

local repository

Tasks:

88 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

The login form was not properly validating user credentials, leading to an error message

loop. This commit fixes the issue by adding proper validation checks for username and

password inputs.

In this example, the summary line is "Fix issue with login validation," which briefly describes

the purpose of the commit. The description provides more details about the problem and

the solution.

When you create a commit using the git commit command, your text editor will open,

allowing you to write the commit message. Alternatively, you can use the -m flag to add

the commit message directly from the command line, like this:

git commit -m "Fix issue with login validation"

It's important to follow good commit message practices to maintain a clean and informative

version history for your projects. This will make it easier for you and your team to track

changes, identify the purpose of each commit, and manage the development process

effectively.

2. Best practice of creating a commit message

2.1 General Commit Message Guidelines

As a general rule, your messages should start with a single line that’s no more than about

50 characters and that describes the change set concisely, followed by a blank line,

followed by a more detailed explanation.

The same recommendations apply whether you are working on a GitHub commit, Gitlab

commit, or your local git server. Follow these guidelines when writing good commit

messages:

Keep it short (less than 150 characters total)

❖ Committing fewer changes at a time can help with this Use the imperative mood

❖ This convention aligns with commit messages generated by commands like git

merge and git revert

❖ Consistency enhances speed of reading comprehension

❖ Tends to be more concise than the other moods

Add a title

❖ Less than 50 characters

❖ Use Title case (i.e. "Add Logging" instead of "add logging")

Add a body (optional)

❖ Less than 100 characters

❖ Explain WHAT the change is, but especially WHY the change was needed

❖ Leave a blank line between the title and body

❖ Separate paragraphs in the body with blank lines

https://initialcommit.com/blog/Git-Commit-Message-Imperative-Mood
https://initialcommit.com/blog/git-merge
https://initialcommit.com/blog/git-merge

89 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

❖ Use a hyphen (-) for bullet points if needed

❖ Use hanging indents if needed

Bad commit examples:

a. Debugging

b. I've added a delete route to the accounts controller

Good commit Examples:

a. Enable Logging Globally

b. Add Account Delete Route

c. Needed for account deletion workflow on frontend

When you use the "git commit" command in Git, there are several operations that take

place. Here is an explanation of the operations applied on the "git commit" command:

Staging: Before you commit changes, you need to stage the modified files or new files to

be included in the commit.

Creating the commit: Once you have staged the changes, the "git commit" command

creates a new commit using the staged changes.

Recording the commit message: When you run "git commit," Git prompts you to provide a

commit message. This message describes the changes made in the commit and serves as

documentation for future reference.

Committing to the local repository: The commit is then saved to the local Git repository,

which is typically located in the git directory within your project.

Creating a new commit object: Git creates a new commit object that contains a reference

to the commit's parent or parents.

Advancing the branch pointer: After the commit is created, Git advances the pointer of the

current branch to the new commit, making the branch point to the latest commit.

The "git log" command in Git allows you to view the commit history of a repository. When

you run "git log," several operations are performed to display a list of commits in

chronological order. Here are the operations related to the "git log" command:

✓ Retrieving commit history

✓ Displaying commit information

✓ Showing commit references

✓ Commit filtering and formatting

✓ Paging and navigation

90 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

1: Read key reading 2.2.2 and ask clarification where necessary

2: Referring to the previous theoretical activity (2.2.1) you are requested to go to the

computer lab to commit file changes to git local repository and manage branches. This task

should be done individually.

3: Apply safety precautions.

4: Present out the steps to commit file changes to git local repository and manage branches.

5: Referring to the steps provided on task 3, commit file changes to git local repository and

manage branches.

6: Present your work to the trainer and whole class.

Key readings 2.2.1: Operation on git commit command

1. Commit file change

Here are the steps to commit file changes to a Git local repository:

1.Check Status: Before committing changes, it's a good practice to review the status

of your repository using the command:

This will show you which files have been modified, added, or deleted.

2.Stage Changes: Use the "git add" command to stage the changes you want to

commit. You can either stage specific files or stage all changes. For example:

● To stage a specific file:

● To stage all changes:

Practical Activity 2.2.2 : Committing File changes to git local

repository and manage branches

Tasks:

91 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

3.Verify Staging: Confirm that the changes you want to commit are staged correctly

by checking the status again:

Staged changes will appear in green.

4.Commit Changes: Once you've staged the desired changes, commit them to the

local repository along with a descriptive commit message using the "git commit"

command:

Replace "Your commit message here" with a concise description of the changes

you're committing

5.Verify Commit: After committing the changes, you can verify that they have been

successfully committed by reviewing the commit history:

This will display a list of commits, including the one you just made. Press "q" to exit

the log.

2. Operations on git commit command

Commit a file

It is used to record the changes in the repository. It is the next command after the git

add. Every commit contains the index data and the commit message. Every commit

forms a parent-child relationship. When we add a file in Git, it will take place in the

staging area. A commit command is used to fetch updates from the staging area to

the repository.

The staging and committing are co-related to each other. Staging allows us to

continue in making changes to the repository, and when we want to share these

changes to the version control system, committing allows us to record these changes.

Commits are the snapshots of the project. Every commit is recorded in the master

branch of the repository. We can recall the commits or revert it to the older version.

Two different commits will never overwrite because each commit has its own

commit-id. This commit-id is a cryptographic number created by SHA (Secure Hash

https://www.javatpoint.com/git-add
https://www.javatpoint.com/git-add

92 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Algorithm) algorithm.

Let's see the different kinds of commits.

To apply a commit file operation in Git, you typically follow these steps:

1. Stage your changes: Before committing your changes, you need to stage the files you

want to include in the commit. You can use the git add command to stage specific

files or directories.

2. Review the changes: Once you've staged the changes, you can use the git status

command to review the modifications you've made. This command shows the staged

changes and any untracked files.

3. Create a commit: After reviewing the changes, you're ready to create a commit. Use

the git commit command to create a new commit with a commit message describing

the changes.

4. Repeat the process: If you have additional changes to include in the commit, you can

repeat steps 1-3. Stage the new changes using git add, review the modifications with

git status, and create a new commit with git commit.

5. Push or share your commits: Once you've finished creating your commits, you can

push them to a remote repository to share them with others or keep a backup. Use

the git push command to push your commits to a remote branch.

3. The git commit command

The commit command will commit the changes and generate a commit-id. The

commit command without any argument will open the default text editor and ask for

the commit message. We can specify our commit message in this text editor. It will

run as follows:

1. $ git commit

The above command will prompt a default editor and ask for a commit message. We

have made a change to newfile1.txt and want it to commit it. It can be done as

follows:

Consider the below output:

As we run the command, it will prompt a default text editor and ask for a commit

93 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

message. The text editor will look like as follows:

Press the Esc key and after that 'I' for insert mode. Type a commit message whatever

you want. Press Esc after that ':wq' to save and exit from the editor. Hence, we have

successfully made a commit.

We can check the commit by git log command. Consider the below output:

We can see in the above output that log option is displaying commit-id, author detail,

date and time, and the commit message.

Git commit -a

The commit command also provides -a option to specify some commits. It is used to

commit the snapshots of all changes. This option only considers already added files

in Git. It will not commit the newly created files.

Consider below scenario:

We have made some updates to our already staged file newfile3 and create a file

newfile4.txt. Check the status of the repository and run the commit command as

follows:

1. $ git commit -a

Consider the output:

94 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

The above command will prompt our default text editor and ask for the commit

message. Type a commit message, and then save and exit from the editor. This

process will only commit the already added files. It will not commit the files that have

not been staged. Consider the below output:

As we can see in the above output, the newfile4.txt has not been committed.

Git commit -m

The -m option of commit command lets you to write the commit message on the

command line. This command will not prompt the text editor. It will run as follows:

$ git commit -m "Commit message."

The above command will make a commit with the given commit message. Consider

the below output:

95 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

In the above output, a newfile4.txt is committed to our repository with a commit

message.

We can also use the -am option for already staged files. This command will

immediately make a commit for already staged files with a commit message. It will

run as follows:

$ git commit -am "Commit message."

4. Edit commit message

Git Commit Amend (Change commit message)

The git commit --amend command is commonly used to make changes to the most

recent commit in Git. It allows you to modify the commit message, add more changes,

or even remove some changes that were accidentally included. Here are some

examples of how git commit --amend can be applied:

1. Changing the commit message:

Suppose you made a commit with a message containing a typo, and you want to

correct it. You can use git commit --amend to change the commit message:

Make some changes to the code

git add

git commit -m "Fixe a bug in the login process"

Oops! Realized the typo in the commit message

git commit --amend -m "Fixed a bug in the login process"

Adding forgotten changes to the previous commit:

If you forgot to include some changes in the last commit, you can use git commit --

amend to add those changes to the previous commit:

Make some changes to the code

git add.

git commit -m "Added new feature A"

96 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Realized that you forgot to add changes to feature B

Add the changes to the staging area

git add path/to/featureB.py

Amend the previous commit to include the changes to feature B

git commit --amend --no-edit

Splitting a commit into multiple commits:

Suppose you made several unrelated changes in a single commit and want to split it

into multiple smaller commits. You can use git commit --amend to do that

interactively:

Make several changes

git add change1.py

git add change2.py

git add change3.py

Commit all changes together

git commit -m "Added changes 1, 2, and 3"

Realized that the changes should be separate commits

Amend the commit and interactively split the changes

git add change1.py

git commit --amend

Stage and commit changes for change2.py

git add change2.py

git commit -m "Added change 2"

Stage and commit changes for change3.py

git add change3.py

git commit -m "Added change 3"

Please note that using git commit --amend to modify commits that have already been

97 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

pushed to a remote repository can cause issues with the history and should be used

with caution. It's best to avoid amending commits that have already been shared with

others.

5. Operation on git log command

We can use git log command in order to list, filter, view commit history in different

ways. we will examine git log command usage in detail with examples.

To see simplified list of commit

The git log command is used to view the commit history in a Git repository. By default,

it displays a detailed list of commits, including information such as commit hash,

author, date, and commit message. Display a simplified list of commits with essential

information:

1. Show a simplified list of commits with the author and date

2. View a simplified list of the last five commits

3. Display a simplified list of commits for a specific branch

To see a list of commits with more detail

To see a list of Git commits with more detailed information, you can use the git log

command without any additional options. By default, git log provides a detailed view

of the commit history.

List Commit History

We will start with git log command without any parameter. This will list all commit

history in an interactive terminal where we can see and navigate.

$ git log

98 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

5.1 List Commit History

We can see from output that following information about the commit provided.

● `Commit` number which is a unique hash identifies the commit

● `Author` the developer who commit. Also email information is provided

● `Date` specifies when the commit occurred

● The last line provides note and information about the commit.

5.2 List One Commit Per Line

If we need to only list unique part of the commit id with the note provided by author,

we can use --oneline option which will just print single line about each commit.

$ git log --oneline

99 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

List One Commit Per Line

5.3 Print Statistics

We may need to print information about the commit in details. We will use --

stat option.

$ git log --stat

100 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

5.4 Print Statistics

We can see from output that extra information like changed file, changed file count,

number of lines added, number of lines deleted.

Print Patch or Diff Information

If we are interested with the code diff information we need to use -p option. -

p option can be used to print path or diff of the files for the commits.

$ git log -p

101 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

5.5 Print Patch or Diff Information

We see from screenshot that added and removed code is shown clearly. Added code

color is green and removed code is red. Also added code lines start with +plus and

removed code lines starts with - minus.

Show/Print Specific Commit In Detail

If we need to look specific commit we need to use git show command. We will also

provide the commit id or number we can to print.

$ git show b1efd742499b00eef970feeef84dc64f301db61f

102 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

5.6 Print Specific Commit In Detail

We can see that specific commit provides diff information in detail.

Show/Print Specific Commit Stats

If we can’t to just print specific commit stat and information we can provide --

stat option to the git show command.

$ git show --stat b1efd742499b00eef970feeef84dc64f301db61f

Show/Print Specific Commit Stats

103 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

5.7 Group Commits By Author

If we want to inspect the commits according to the author name we need to group

commits by author. We can use shortlog command in order to list commits notes

grouped by author name.

$ git shortlog

Group Commits By Author

5.8 Show Author Commit Numbers

If we are interested with the authors commit numbers we need to provide -s options

to the shortlog command.This will provides commit numbers for each authors.

$ git shortlog -s

104 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

5.9 Show Author Commit Numbers

Sort Authors By Commit Numbers

We can improve previous example and sort authors by their commit numbers. We

will add -n too the previous example where final command will be like below.

$ git shortlog -n -s

105 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Sort Authors By Commit Numbers

5.10 Pretty Print

We can also customize the log output according to our needs. We can use --

pretty option and some parameters to print different log output. In this example we

will use %cn for author name %h hash value of commit and %cd for commit time.

$ git log --pretty="%cn committed %h on %cd"

106 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Pretty Print

5.11 Filter By Author

In some cases we may need to filter commits according to the author name. We will

use --author and provide the author name to filter and show only given author. In

this example we will filter author named dmiller.

$ git log --author="dmiller"

107 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Filter By Author

5.12 Filter By Number

If we want to list and print specified number of commit we need to use - with the

number we want to print. In this example we will print last 5 commit.

$ git log -5 --oneline

Filter By Number

108 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

5.13 Filter By Date

We can also filter according to date. We will provide the date we want to start listing.

We will use --after option and provide the date. Date will be MM-DD-YYYY format. In

this example we will list commits those created after 1 December 2018.

$ git log --after="12-1-2018"

Filter By Date

We can also use --before where commits created before specified date will be

printed.

5.14 Filter By Message

We can print or list logs by filtering according to the message. We will use --

grep option and provide the filter term. We will filter for message http in this

example.

$ git log --grep="http"

109 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Filter By Message

5.15 Filter By File

If we are looking for specific file change during commit we can filter for file. We will

use -- and provide file names which is expected to be in commit change. In this

example we will look file ip.c which is expected to be committed.

$ git log -- ip.c

Filter By Content

110 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Also we can filter commits according to the commit content. This will be very useful

if we want to search and filter for specific change. We will use -S option and provide

filter term. In this example we will filter for raw_scan. Keep in mind that this may take

some time because it will search in all commits which is not indexed for fast search.

$ git log -S"raw_scan"

Filter By Content

5.16 Filter By Commit Id/Hash Range

Commits have their own hash ids. If we want to list range of Commits we can provide

the start and end commit id where commits between them will be listed.

$ git log b642dc129c4d349a849fb0e..1ba01193725f4c

Filter By Commit Id/Hash Range

5.17 List Only Merges

By default merge commits are printed and listed. But if the default behavior is change

with config and we want to list and print merge commits we can use --merge option

to list merge commits too.

$ git log –merge

List No Merges

By default merges commits are printed and listed with git log command. If we do not

want to list or print then for all operations we can use --no-merges option which will

111 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

do not show merge commits.

$ git log --no-merge

6. Manage branches

6.1 Git Branch

A branch is a version of the repository that diverges from the main working project.

It is a feature available in most modern version control systems. A Git project can

have more than one branch. These branches are a pointer to a snapshot of your

changes. When you want to add a new feature or fix a bug, you spawn a new branch

to summarize your changes. So, it is complex to merge the unstable code with the

main code base and also facilitates you to clean up your future history before merging

with the main branch.

Figure 11: Git Master Branch

The master branch is a default branch in Git. It is instantiated when first commit made

on the project. When you make the first commit, you're given a master branch to the

starting commit point. When you start making a commit, then master branch pointer

automatically moves forward. A repository can have only one master branch.

Master branch is the branch in which all the changes eventually get merged back. It

can be called as an official working version of your project.

6.2 Operations on Branches

We can perform various operations on Git branches. The git branch command allows

you to create, list, rename and delete branches. Many operations on branches are

112 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

applied by git checkout and git merge command. So, the git branch is tightly

integrated with the git checkout and git merge commands.

The Operations that can be performed on a branch:

1.Create Branch

You can create a new branch with the help of the git branch command. This

command will be used as:

Syntax:

1. $ git branch <branch name>

Output:

This command will create the branch B1 locally in Git directory.

2.List Branch

You can List all of the available branches in your repository by using the following

command.

Either we can use git branch - list or git branch command to list the available

branches in the repository.

Syntax:

1. $ git branch --list or $ git branch

Output:

Here, both commands are listing the available branches in the repository. The symbol

* is representing currently active branch.

3.Delete Branch

You can delete the specified branch. It is a safe operation. In this command, Git

113 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

prevents you from deleting the branch if it has unmerged changes. Below is the

command to do this.

Syntax:

1. $ git branch -d<branch name>

Output:

This command will delete the existing branch B1 from the repository.

The git branch d command can be used in two formats. Another format of this

command is git branch D. The 'git branch D' command is used to delete the specified

branch.

1. $ git branch -D <branch name>

Delete a Remote Branch

You can delete a remote branch from Git desktop application. Below command is

used to delete a remote branch:

Syntax:

1. $ git push origin -delete <branch name>

Output:

As you can see in the above output, the remote branch named branch2 from my

GitHub account is deleted.

4.Switch Branch

Git allows you to switch between the branches without making a commit. You can

switch between two branches with the git checkout command. To switch between

the branches, below command is used:

1. $ git checkout<branch name>

114 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Switch from master Branch

You can switch from master to any other branch available on your repository without

making any commit.

Syntax:

1. $ git checkout <branch name>

Output:

As you can see in the output, branches are switched from master to branch4 without

making any commit.

Switch to master branch

You can switch to the master branch from any other branch with the help of below

command.

Syntax:

1. $ git branch -m master

Output:

As you can see in the above output, branches are switched from branch1 to

master without making any commit.

5.Rename Branch

We can rename the branch with the help of the git branch command. To rename a

branch, use the below command:

Syntax:

1. $ git branch -m <old branch name><new branch name>

Output:

115 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

As you can see in the above output, branch4 renamed as renamedB1.

6.Merge Branches

Git allows you to merge the other branch with the currently active branch. You can

merge two branches with the help of git merge command. Below command is used

to merge the branches:

Syntax:

1. $ git merge <branch name>

Output:

From the above output, you can see that the

master branch merged with renamedB1. Since I have made no-commit before

merging, the output is showing as already up to date.

● When using the `git commit` command in Git, several operations are applied to creat

e a new commit in the repository. There are operations involved in the `git commit` c

ommand: Staging, Creating the commit, recording the commit message, committing

to the local repository, advancing the branch pointer.

● Here are the steps to commit file changes to a Git local repository:

1. Check Status

2. Stage Change

3. Verify Staging

4. Commit Changes

5. Verify Commit

Points to Remember

116 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

In a team project, Alice takes charge of creating a new branch called feature-xyz to develop a

new feature. She wants to manage her changes and review the commit history to ensure that

her work is well-documented. Meanwhile, Bob, another team member, is working on a

separate feature on the feature-abc branch. Both they want to keep track of available

branches and switch between them. Alice periodically merges the latest changes from the

main branch, supervised by Sarah, the project lead, to ensure her branch remains up to date.

Together, Alice, Bob, and Sarah effectively collaborate using Git's powerful features to

manage their workflow, track progress, and maintain code integrity.

Application of learning 2.2.

117 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

 Learning outcome 2 end assessment

1. Match the Git branch operations with their corresponding commands:

Operation Command

Create branch a. git branch <branch-name>

List branch b. git branch

Delete local branch c. git branch -d <branch-name>

Delete remote branch d. git push origin --delete <branch-name>

Switch branch e. git checkout <branch-name>

Rename branch f. git branch -m <old-branch-name> <new-branch-name>

2. Complete the sentence:

I. Before staging a file, you must check all..........files and..........files.

II. To create a new branch in Git, you use the command git __________ <branch-name>.

III. To list all branches in a Git repository, you use the command git __________.

IV. To delete a local branch, you use the command git __________ <branch-name>.

V. To delete a remote branch, you use the command git __________ origin --delete

<branch-name>.

VI. To switch to a different branch, you use the command git __________ <branch-

name>.

VII. To rename a branch, you use the command git __________ <old-branch-name> <new-

branch-name>.

3. How do I add files to a commit?

✓ $ git stage

✓ $ git commit

✓ $ git add

✓ $ git reset

4. How to save the current state of your code in git?

✓ By validating the modifications staged with $ git commit

✓ By adding all the changes and staging them with $ git stage

✓ By adding all the changes and organizing them with $ git add

✓ By creating a new commit with $ git init

5. Read the Following statement and answer by true if correct or false otherwise

The git add command is crucial for staging changes, whether they involve new files or

modifications to existing ones, preparing them for the next commit. Once staged, the git

commit command is used to permanently save these changes to the local repository,

typically requiring a commit message for clarity. Additionally, the git commit command

Theoretical assessment

118 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

can be employed in the process of merging branches within Git, integrating changes from

different lines of development.

a. The git add command is used to stage changes for the next commit.

b. The git add command can be used to stage both new files and modifications to existing

files

c. The git commit command is used to permanently save changes to the local repository.

d. The git commit command requires a commit message to be provided.

e. The git commit command can be used to merge branches in Git.

As the project's owner, Sarah wants to tweak a few features and has assigned her coworkers

assignments to do so. She begins by creating a new Git repository and a branch called

"feature_branch." By adding a new file with the name new_file.txt, Alex makes modifications

to the project files. Emily verifies that the repository is functioning properly, adds new_file.txt

to the staging area, and then commits the modifications with the message "Add new_file.txt."

David makes a switch to the main branch, merges the updates from "feature_branch," and

clears up any conflicts. Finally, Sarah, the repository's owner, removes the "feature_branch"

following a successful merge. They handle the project's branches, use the staging area

properly, and commit file changes to the local Git repository.

Practical assessment

119 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

References

LinuxHint. (n.d.). Git: List of new, modified, and deleted files. Retrieved from

https://linuxhint.com/git-list-of-new-modified-deleted-files/

Noble Desktop. (n.d.). How to stage and commit files in Git. Retrieved from

https://www.nobledesktop.com/learn/git/stage-commit-files

JavaTpoint. (n.d.). Git Reset. Retrieved from https://www.javatpoint.com/git-reset

JavaTpoint. (n.d.). Git rm. Retrieved from https://www.javatpoint.com/git-rm

CareerFoundry. (n.d.). Git commit command explained. Retrieved from

https://careerfoundry.com/en/blog/web-development/git-commit-command/

TutorialsPoint. (n.d.). Git Managing Branches. Retrieved from

https://www.tutorialspoint.com/git/git_managing_branches.htm

https://linuxhint.com/git-list-of-new-modified-deleted-files/
https://www.nobledesktop.com/learn/git/stage-commit-files
https://www.javatpoint.com/git-reset
https://www.javatpoint.com/git-rm
https://careerfoundry.com/en/blog/web-development/git-commit-command/
https://www.tutorialspoint.com/git/git_managing_branches.htm

120 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Learning Outcome 3: Ship Codes

121 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Indicative contents

3.1 Fetch file from GitHub repository

3.2 Push files to remote branch

3.3 Merge branches on remote repository

Key Competencies for Learning Outcome 3: Ship codes.

Knowledge Skills Attitudes

• Description of pull and

fetch commands

operations

• Description of pull

request

• Explanation of Tags used

on git push command

and operations

• Description of operation

on git rebase command

• Description of operation

on git merge.

• Fetching file from

GitHub repository

• Pulling files to GitHub

repository

• Pushing files to remote

branch

• Creating pull request

• Merging branches on

remote repository

• Being Practical

oriented

• Have Communication

Skills

• Have critical thinking

• Have Team work spirit

• Being Problem solver

122 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Duration: 20hrs

Learning outcome 2 objectives:

By the end of the learning outcome, the trainees will be able to:

1. Describe correctly pull, fetch, push and git rebase commands based on git project

2. Fetch correctly files in different operations based on git instructions

3. Push properly files to remote branch based on committed files

4. Merge effectively branches on remote repository based on pull request created.

Resources

Equipment Tools Materials

• Computer • Git

• GitHub

• Text editor (vs code)

• Terminal (CMD,

Gitbash).

• Internet

• Electricity

123 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Indicative content 3.1: Fetch file from GitHub repository

1: In small groups, you are requested to answer the following questions related to the file

from GitHub:

i. i.What do you understand about the following term:

a. Fetch

b. Pull

ii. Can you explain the operations involved in the `git fetch` command in Git?

iii. Can you explain the operations involved in the `git pull` command in Git?

2: Participate in group formulation

3: Present your findings to your classmates and trainer

4: For more clarification, read the key readings 3.1.1. In addition, ask questions where

necessary.

Key readings 3.1.1 : Description of Fetching file from GitHub

1. Git Fetch

Git "fetch" Downloads commits, objects and refs from another repository. It fetches

branches and tags from one or more repositories. It holds repositories along with the

objects that are necessary to complete their histories to keep updated remote-tracking

branches.

Figure 12: Git fetch branches

Duration: 7 hrs

Theoretical Activity 3.1.1: Introduction of Fetching file from GitHub

Tasks:

124 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

How git fetch works with remote branches

To better understand how git fetch works let us discuss how Git organizes and stores

commits. Behind the scenes, in the repository's ./.git/objects directory, Git stores all

commits, local and remote. Git keeps remote and local branch commits distinctly separate

through the use of branch refs. The refs for local branches are stored in

the ./.git/refs/heads/. Executing the git branch command will output a list of the local

branch refs. The following is an example of git branch output with some demo branch

names.

git branch main feature1 debug2

Examining the contents of the /.git/refs/heads/ directory would reveal similar output.

ls ./.git/refs/heads/ main feature1 debug2

Remote branches are just like local branches, except they map to commits from somebody

else’s repository. Remote branches are prefixed by the remote they belong to so that you

don’t mix them up with local branches. Like local branches, Git also has refs for remote

branches. Remote branch refs live in the ./.git/refs/remotes/ directory. The next example

code snippet shows the branches you might see after fetching a remote repo conveniently

named remote-repo:

git branch -r

origin/main

origin/feature1

origin/debug2

remote-repo/main

remote-repo/other-feature

This output displays the local branches we had previously examined but now displays them

prefixed with origin/. Additionally, we now see the remote branches prefixed with remote-

repo. You can check out a remote branch just like a local one, but this puts you in a

detached HEAD state (just like checking out an old commit). You can think of them as read-

only branches. To view your remote branches, simply pass the -r flag to the git

branch command.

You can inspect remote branches with the usual git checkout and git log commands. If you

approve the changes a remote branch contains, you can merge it into a local branch with a

normal git merge. So, unlike SVN, synchronizing your local repository with a remote

repository is actually a two-step process: fetch, then merge. The git pull command is a

convenient shortcut for this process.

The "git fetch"command

125 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

The "git fetch" command is used to pull the updates from remote-tracking branches.

Additionally, we can get the updates that have been pushed to our remote branches to our

local machines. As we know, a branch is a variation of our repositories main code, so the

remote-tracking branches are branches that have been set up to pull and push from remote

repository.

1.1 Git fetch commands and options

git fetch <remote>

Fetch all of the branches from the repository. This also downloads all of the required

commits and files from the other repository.

git fetch <remote> <branch>

Same as the above command, but only fetch the specified branch.

git fetch --all

A power move which fetches all registered remotes and their branches:

git fetch --dry-run

The --dry-run option will perform a demo run of the command. It will output examples of

actions it will take during the fetch but not apply them.

1.2 Git Pull

The term pull is used to receive data from GitHub. It fetches and merges changes from the

remote server to your working directory.

The git pull command is used to pull a repository.

Figure13: Git pull

The git pull command is used to fetch and download content from a remote repository and

immediately update the local repository to match that content. Merging remote upstream

changes into your local repository is a common task in Git-based collaboration work flows.

The git pull command is actually a combination of two other commands, git fetch followed

by git merge. In the first stage of operation git pull will execute a git fetch scoped to the

local branch that HEAD is pointed at. Once the content is downloaded, git pull will enter a

merge workflow. A new merge commit will be-created and HEAD updated to point at the

new commit.

126 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

 The git pull command first runs git fetch which downloads content from the specified

remote repository. Then a git merge is executed to merge the remote content refs and

heads into a new local merge commit. To better demonstrate the pull and merging process

let us consider the following example. Assume we have a repository with a main branch

and a remote origin.

Figure 14: Local main branch and remote origin branch

In this scenario, git pull will download all the changes from the point where the local and

main diverged. In this example, that point is E. git pull will fetch the diverged remote

commits which are A-B-C. The pull process will then create a new local merge commit

containing the content of the new diverged remote commits.

Figure 15: New local merge after pull

127 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

In the above diagram, we can see the new commit H. This commit is a new merge commit

that contains the contents of remote A-B-C commits and has a combined log message. This

example is one of a few git pull merging strategies. A --rebase option can be passed to git

pull to use a rebase merging strategy instead of a merge commit. The next example will

demonstrate how a rebase pull works. Assume that we are at a starting point of our first

diagram, and we have executed git pull --rebase.

Figure16: Git pull --rebase

In this diagram, we can now see that a rebase pull does not create the new H commit.

Instead, the rebase has copied the remote commits A--B--C and rewritten the local commits

E--F--G to appear after them in the local origin/main commit history.

Common Options

git pull <remote>

Fetch the specified remote’s copy of the current branch and immediately merge it into the

local copy. This is the same as git fetch ＜remote＞ followed by git merge origin/＜current-

branch＞.

git pull --no-commit <remote>

Similar to the default invocation, fetches the remote content but does not create a new

merge commit.

git pull --rebase <remote>

Same as the previous pull Instead of using git merge to integrate the remote branch with

the local one, use git rebase.

git pull --verbose

Gives verbose output during a pull which displays the content being downloaded.

1.2 Operations on git fetch command

128 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

The git fetch command is a powerful tool in Git that allows you to retrieve changes from a

remote repository and update your local repository accordingly. Here are some applications

of the various operations you mentioned:

1. Fetch the remote repository: When you run git fetch, Git connects to the remote

repository specified in the configuration and retrieves all the new commits,

branches, and tags from that remote repository. It downloads the latest changes to

your local repository, but it does not integrate them with your current working

branch.

2. Fetch the specific branch: By providing the branch name as an argument to git

fetch, you can fetch the latest changes only for that specific branch from the remote

repository. For example, if you want to fetch the latest changes for the branch

named "development," you would run git fetch origin development. This operation

updates your local repository with the latest commits and updates related to the

specified branch.

3. Fetch all branches simultaneously: By default, when you run git fetch without

specifying a specific branch, it fetches changes for all branches from the remote

repository. This operation retrieves the latest commits and updates for all branches,

updating your local repository accordingly.

4. Synchronize the local repository: git fetch is often used to synchronize your local

repository with the latest changes from the remote repository. After fetching the

latest changes, you can compare them with your local branches to see the

differences and decide how to integrate them. It allows you to review the changes,

merge them manually, or switch to a different branch to work on the updated

version.

 git fetch is a useful command to keep your local repository up-to-date with the latest

changes from the remote repository. It fetches new commits, branches, and tags and allows

you to review and integrate them at your convenience without automatically merging them

into your current working branch.

2. Operations on git pull

The git pull command is used to fetch and merge changes from a remote repository into

your local branch. Here are the applications of the different operations you mentioned:

1. Default git pull: When you run git pull without any additional arguments, it performs

the default behavior of fetching the latest changes from the remote repository and

merging them into your current branch. It connects to the remote repository

specified in the configuration (usually the "origin" remote) and downloads any new

commits, branches, and tags. Then, it automatically merges those changes into your

current branch using the default merge strategy. If there are any conflicts, you will

need to resolve them manually.

129 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

2. git pull remote branch: If you want to pull changes from a specific branch in the

remote repository, you can specify the branch name as an argument to git pull. For

example, running git pull origin feature-branch fetches the latest changes from the

"feature-branch" in the remote repository specified by the "origin" remote. It then

merges those changes into your current branch.

3. git force pull: The git force pull command is not a built-in Git command. However,

you can achieve a similar effect by combining the git fetch and git reset commands.

Running git fetch retrieves the latest changes from the remote repository, and then

git reset --hard origin/master resets your current branch to match the "master"

branch of the remote repository, discarding any local changes. Using this

combination effectively forces a pull-like behavior, overwriting your local branch

with the remote branch. Be cautious when using git force pull as it can cause

irreversible data loss.

4. git pull origin master: This git pull command explicitly specifies the remote

repository ("origin") and the branch to pull from ("master"). Running git pull origin

master fetches the latest changes from the "master" branch of the remote repository

and merges them into your current branch. It's a specific way to update your current

branch with the latest changes from the "master" branch of the remote repository.

git pull is a versatile command that allows you to fetch and merge changes from a remote

repository. By using different arguments, such as specifying the remote branch or force

pulling, you can tailor the behavior of git pull to suit your needs.

2.1 Differences between git fetch and git pull

To understand the differences between fetch and pull, let's know the similarities between

both of these commands. Both commands are used to download the data from a remote

repository. But both of these commands work differently. Like when you do a git pull, it

gets all the changes from the remote or central repository and makes it available to your

corresponding branch in your local repository. When you do a git fetch, it fetches all the

changes from the remote repository and stores it in a separate branch in your local

repository. You can reflect those changes in your corresponding branches by merging.

So basically.

1. git pull = git fetch + git merge

Git Fetch vs. Pull

Some of the key differences between both of these commands are as follows:

git fetch git pull

130 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Fetch downloads only new data from a

remote repository.

Pull is used to update your current HEAD

branch with the latest changes from the

remote server.

Fetch is used to get a new view of all the

things that happened in a remote

repository.

Pull downloads new data and directly

integrates it into your current working copy

files.

Fetch never manipulates or spoils data. Pull downloads the data and integrates it

with the current working file.

It protects your code from merge

conflict.

In git pull, there are more chances to create

the merge conflict.

It is better to use git fetch command

with git merge command on a pulled

repository.

It is not an excellent choice to use git pull if

you already pulled any repository.

1: Read key reading 3.1.2 and ask clarification where necessary

2: Referring to the previous theoretical activities (3.1.1) you are requested to go to the

computer lab to fetch file from GitHub repository. This task should be done individually.

3: Apply safety precautions

4: Present out the steps to fetch file from GitHub repository.

5: Referring to the steps provided on task 3, fetch file from GitHub repository.

6: Present your work to the trainer and whole class

Key readings 3.1.2: Fetching file from GitHub repository

1. Fetch a file from a GitHub repository

To fetch a file from a GitHub repository, you typically need to clone the repository to your

local machine. Here are the steps:

 1. Find the Repository: Go to the GitHub website and navigate to the repository

containing the file you want to fetch.

Practical Activity 3.1.2: Fetching file from GitHub repository

Task:

131 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

 2. Get the Repository URL: Click on the "Code" button, then copy the URL provided.

It should look something like https://github.com/username/repository.git.

 3. Open Terminal/Command Prompt: Open your terminal or command prompt on

your local machine.

 4. Navigate to the Desired Directory: Use the cd command to navigate to the

directory where you want to clone the repository. For example:

5.Clone the Repository: Use the git clone command followed by the repository URL to clone

the repository to your local machine:

6.Navigate into the Cloned Repository: Move into the cloned repository directory using the

cd command:

7. Fetch the File: If you know the path to the file you want to fetch, you can navigate to it

using a file explorer or use commands like ls (Unix-based systems) or dir (Windows) to list

the contents of the directory and locate the file. If the file is located within a subdirectory

of the repository, you can navigate to that subdirectory using the cd command.

 Copy or Open the File: Once you have located the file, you can copy it to another

location on your local machine or open it using a text editor or IDE to view its

contents.

1.1 To fetch the remote repository:

We can fetch the complete repository with the help of fetch command from a repository

URL like a pull command does. See the below output:

Syntax:

1. $ git fetch< repository Url>

example

In the above output, the complete repository has fetched from a remote URL.

132 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

1.2 To fetch a specific branch:

Step1: Navigate to Git Repository

Go to the desired local repository by executing the “cd” command:

$ cd "C:\Users\nazma\Git\Test_14"

Step2:Add Remote URLs

Next, use the “git remote add” command along with the remote name and remote

repository URL for tracking changes:

$ git remote add origin https://github.com/GitUser0422/demo5.git

Step 3: Verify Remote URLs List

Now, check the newly added remote URL in Git by running the following command:

$ git remote -v

It can be seen that the remote URL has been added successfully:

Step 4: Fetch Particular Remote Branch

Finally, execute the “git fetch” command with the remote name and the desired remote

branch name:

$ git fetch origin master

Here, we have specified the remote branch name as “master”:

133 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

We can also fetch a specific branch from a repository which is not master. It will only access

the element from a specific branch.

Syntax:

1. $ git fetch <branch URL><branch name>

Example

In the given output, the specific branch test has fetched from a remote URL.

Step 5: Verify Fetch Remote Branch

Lastly, run the “git branch” command along with the “-a” flag to list all branches including

the local and remote:

$ git branch -a

As you can see the particular remote branch has been fetched successfully:

134 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

That was all about fetching the particular remote Git repository branch.

To fetch all the branches simultaneously:

The git fetch command allows to fetch all branches simultaneously from a remote

repository. See the below example:

Syntax:

$ git fetch -all

Example:

In the above output, all the branches have fetched from the repository Git-Example.

To synchronize the local repository:

Suppose, your team member has added some new features to your remote repository. So,

to add these updates to your local repository, use the git fetch command. It is used as

follows.

Syntax:

$ git fetch origin

Example:

In the above output, new features of the remote repository have updated to my local

system. In this output, the branch test2 and its objects are added to the local repository.

The git fetch can fetch from either a single named repository or URL or from several

repositories at once. It can be considered as the safe version of the git pull commands.

The git fetch downloads the remote content but not update your local repo's working state.

When no remote server is specified, by default, it will fetch the origin remote.

1.3 Differences between git fetch and git pull

135 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

To understand the differences between fetch and pull, let's know the similarities between

both commands. Both commands are used to download the data from a remote repository.

But both commands work differently. Like when you do a git pull, it gets all the changes

from the remote or central repository and makes it available to your corresponding branch

in your local repository. When you do a git fetch, it fetches all the changes from the remote

repository and stores it in a separate branch in your local repository. You can reflect those

changes in your corresponding branches by merging.

So basically,

git pull = git fetch + git merge

Pulling changes from a remote repository in Git involves several steps, depending on the

specific operation you're performing. Here are the steps for various scenarios:

 1.Pulling Changes from the Default Branch:

● Navigate to your local repository directory using the terminal or command

prompt.

● Use the following command to pull changes from the default branch (usually

"main" or "master") of the remote repository:

2.Pulling Changes from a Specific Branch:

● If you want to pull changes from a specific branch of the remote repository, specify

both the remote and branch names in the pull command:

Replace <remote-name> with the name of the remote repository (often "origin") and

<branch-name> with the name of the branch you want to pull changes from.

Pulling Changes Without Merging:

● If you want to fetch changes from the remote repository without merging them into

your local branch immediately, you can use the fetch command followed by the

checkout command to inspect the changes before merging:

This will fetch changes from the remote repository but keep your local branch unchanged

until you explicitly merge the changes.

3.Pulling Changes with Rebase:

● To pull changes from the remote repository and rebase your local commits on top

of the remote commits, use the rebase option with the pull command:

4.Pulling Changes with Force:

136 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

● In some cases, you may need to forcefully overwrite your local changes with the

changes from the remote repository. Use the force option with the pull command:

Be cautious when using this option, as it can result in the loss of local changes.

There is another way to pull the repository. We can pull the repository by using the git

pull command. The syntax is given below:

1. $ git pull <options><remote>/<branchname>

2. $ git pull origin master

Resolving merge conflicts in Git involves several steps. Here's a guide on how to handle

merge conflicts:

 1. Identify Conflicts: After attempting to merge changes from a remote branch or

another local branch, Git may encounter conflicts if the changes overlap or conflict

with each other. Git will notify you of these conflicts and mark the conflicted files in

your working directory.

 2. View Conflicts: Open the conflicted files in a text editor. Git will insert conflict

markers (<<<<<<<, =======, and >>>>>>>) to indicate the conflicting sections. These

markers delineate the conflicting changes from both branches.

 3. Analyze Conflicts: Review the conflicting sections in the file. Identify the changes

from both branches and decide how to resolve the conflicts. You may choose to

keep one version of the changes, combine them, or make entirely new changes.

 4. Resolve Conflicts: Edit the conflicted file to resolve the conflicts manually.

Remove the conflict markers and make the necessary adjustments to reconcile the

conflicting changes. Ensure that the final version of the file integrates the desired

changes from both branches.

 5. Save Changes: After resolving the conflicts, save the changes to the file in your

text editor.

 6.Mark as Resolved: Once you have resolved the conflicts in all conflicted files, stage

the changes by marking the conflicts as resolved:

7.Commit Changes: After staging the resolved changes, commit the changes to complete

the merge process:

This will open a commit message editor where you can provide a description of the merge

and the resolutions you made to the conflicts.

8.Continue with Merge: If you were in the middle of a merge operation when conflicts

occurred, you can continue the merge process after resolving conflicts by running:

137 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

 This command will finalize the merge commit with the resolved conflicts.

 9.Verify Resolution: After committing the changes, verify that the conflicts have

been resolved successfully by reviewing the merged files and testing the

functionality of the merged code.

 10.Push Changes: If you were merging changes from a remote branch, push the

merged changes to the remote repository:

This will update the remote repository with the resolved merge

To fetch a file from a GitHub repository, you typically need to clone the repository to your

local machine. Here are the steps:

 1.Find the Repository

 2.Get the Repository URL

 3.Open Terminal/Command Prompt

 4.Clone the Repository

 5.Navigate into the Cloned Repository

 6. Fetch the File

The owner of the GBY project, which uses Git for version control, needs to improve it by adding

new features and content to make management, collaboration, and maintenance easier.

Different tasks are given to a team of developers to complete. As with getting the most recent

updates from a cloud-based document collaboration platform, Alice is responsible with

obtaining the remote repository. Like subscribing to channels or subjects on a social media

platform, Bob oversees fetching a particular branch. Claire's job is to synchronize the local

repository across all branches at once, which is like syncing a music streaming service across

several devices. David executes the standard git pull action, which is comparable to an email

client automatically downloading new emails. Emma "pulls" a particular remote branch, which

is comparable to downloading specific files or directories from cloud storage. In a manner like

overwriting local files on a file synchronization service, Frank manages the git pull --force

procedure. Last but not least, Grace updates a piece of software to the most recent stable

version by pulling changes from the "master" branch.

Points to Remember

Application of learning 3.1.

138 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Indicative content 3.2: Push files to remote branch

1: In small groups, you are requested to answer the following questions related to the files

pushing to remote branch:

1) What do you understand about the term push?

2) Can you provide a description of the tags used in the `git push` command?

2: Provide the answer for the asked questions and write them on papers.

3: Present the findings/answers to the whole class

4: For more clarification, read the key readings 3.2.1. In addition, ask questions where

necessary.

Key readings 3.2.1: Description of Git push operations

1. Definition of Git Push

Using the git push command, you can upload your files available on your local machine to

the remote repository. After git pushes the changes to the remote repository other

developers can access the changes and they can contribute their changes by git pulling.

Before pushing it to the remote repository you need to do a git commit to your local

machine.

1.1 Git Push Command

Git push allows us to transfer files from the local repository to remote repository hosting

services like GitHub, GitLab, etc. Other developers who want to work on the files can access

them after being uploaded to a remote repository.

Duration: 6 hrs

Theoretical Activity 3.2.1: Introduction to files pushing to remote

Tasks:

https://www.geeksforgeeks.org/what-is-git-commit/
https://www.geeksforgeeks.org/how-to-download-and-install-git-lab/

139 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Figure 17: Push diagram

In the above diagram, we can observe If our local main branch is way back when compared

to the central main repository after that git push origin main will publish the changes. git

push is essential as same as the git merge.

git push <remote> <branch>

1. The <remote> option refers to the remote repository to which you want to push

your files it will refer to its alias name where the name is mapped with the remote

repository URL

2. The <branch> option represents the branch of the GitHub repository which you

want to push

The push term refers to upload local repository content to a remote repository. Pushing is

an act of transfer commits from your local repository to a remote repository. Pushing is

capable of overwriting changes; caution should be taken when pushing.

140 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Moreover, we can say the push updates the remote refs with local refs. Every time you push

into the repository, it is updated with some interesting changes that you made. If we do not

specify the location of a repository, then it will push to default location at origin master.

The "git push" command is used to push into the repository. The push command can be

considered as a tool to transfer commits between local and remote repositories. The basic

syntax is given below:

1. $ git push <option> [<Remote URL><branch name><refspec>...]

1.2 Description of Git Push Tags

<repository>: The repository is the destination of a push operation. It can be either a URL

or the name of a remote repository.

<refspec>: It specifies the destination ref to update source object.

--all: The word "all" stands for all branches. It pushes all branches.

--prune: It removes the remote branches that do not have a local counterpart. Means, if

you have a remote branch say demo, if this branch does not exist locally, then it will be

removed.

--mirror: It is used to mirror the repository to the remote. Updated or Newly created local

refs will be pushed to the remote end. It can be force updated on the remote end. The

deleted refs will be removed from the remote end.

--dry-run: Dry run tests the commands. It does all this except originally update the

repository.

--tags: It pushes all local tags.

--delete: It deletes the specified branch.

-u: It creates an upstream tracking connection. It is very useful if you are going to push the

branch for the first time.

1.3 Explanation of operations on git push

push on origin master

In Git, the command git push origin master is used to push your local branch named

"master" to the remote repository named "origin." Here's a breakdown of what each part

of the command means:

git push: This is the command used to upload your local commits to a remote repository.

origin: This refers to the name of the remote repository where you want to push your

changes. By convention, "origin" is the default name given to the main remote repository

when you clone it.

master: This is the name of the local branch that you want to push. In this case, "master" is

the branch you are pushing.

Git push origin master is a special command-line utility that specifies the remote branch

and directory. When you have multiple branches and directory, then this command assists

you in determining your main branch and repository.

141 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Generally, the term origin stands for the remote repository, and master is considered as

the main branch. So, the entire statement "git push origin master" pushed the local content

on the master branch of the remote location.

Syntax:

1. $ git push origin master

Git push force

The git push --force command is used to forcefully push your local branch and overwrite

the corresponding branch on the remote repository, even if it results in losing commits

or overwriting someone else's work. It allows you to make significant changes to the

history of the remote branch.

The git force push allows you to push local repository to remote without dealing with

conflicts. It is used as follows:

1. $ git push <remote><branch> -f

Or

1. $ git push <remote><branch> -force

The -f version is used as an abbreviation of force. The remote can be any remote location

like GitHub, Subversion, or any other git service, and the branch is a particular branch name.

For example, we can use git push origin master -f.

We can also omit the branch in this command. The command will be executed as:

1. $git push <remote> -f

We can omit both the remote and branch. When the remote and the branch both are

omitted, the default behavior is determined by push.default setting of git config. The

command will be executed as:

1. $ git push -f

How to Safe Force Push Repository:

There are several consequences of force pushing a repository like it may replace the work

you want to keep. Force pushing with a lease option is capable of making fail to push if there

are new commits on the remote that you didn't expect. If we say in terms of git, then we

can say it will make it fail if remote contains untracked commit. It can be executed as:

1. $git push <remote><branch> --force-with-lease

git push verbose or Git push -v/--verbose

The git push --verbose command is used to display detailed information about the push

operation. It provides additional output, including progress updates, error messages, and

other relevant details during the push process.

The -v stands for verbosely. It runs command verbosely. It pushed the repository and gave

a detailed explanation about objects. Suppose we have added a newfile2.txt in our local

142 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

repository and commit it. Now, when we push it on remote, it will give more description

than the default git push. Syntax of push verbosely is given below:

Syntax:

1. $ git push -v

Or

1. $ git push --verbose

delete a remote branch

To delete a remote branch in Git, you can use the git push command with the --delete or -

d option, followed by the name of the remote branch you want to delete.

We can delete a remote branch using git push. It allows removing a remote branch from

the command line. To delete a remote branch, perform below command:

Syntax:

1. $ git push origin -delete edited

1: Read key reading 3.2.2 and ask clarification where necessary

2: Referring to three (3) previous theoretical activities (3.2.1) you are requested to go to the

computer lab to push files to remote branch. This task should be done individually.

3: Apply safety precautions.

4: Present the steps of pushing files to the remote branch.

5: Referring to the steps provided on task 3, push files to the remote branch.

6: Present your work to the trainer and whole class

Key readings 3.2.1: Applying Git push operations

1. Pushing files to a remote branch

Pushing files to a remote branch in Git involves several steps. Here's a detailed guide:

1. Add and Commit Changes: First, ensure that you have made the necessary changes to

your files. Use the following commands to stage your changes and commit them:

Practical Activity 3.2.2: Pushing files to remote branch.

Task:

143 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

2. Check Remote Repository Status: Before pushing changes, it's a good practice to verify

the status of your local repository compared to the remote repository. Use the following

command:

3. Fetch and Pull Changes: Fetch the latest changes from the remote repository and ensure

your local branch is up to date. This step helps in avoiding conflicts during the push.

4.Push Changes to Remote Branch: After committing your changes and ensuring your local

branch is up to date, push your changes to the remote branch:

Replace <local_branch_name> with the name of your local branch and

<remote_branch_name> with the name of the remote branch you want to push to. If the

branch does not exist on the remote repository, it will be created. If it does exist, the

changes will be pushed to that branch.

Alternatively, if you're working on the same branch locally and remotely, you can use the

simpler form:

5.Verify Changes on Remote Repository: Once the push is successful, verify that your

changes are reflected on the remote repository by visiting the repository's web interface or

using Git commands to check the remote branch:

144 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

1.1 Git Push Origin Master

Git push origin master is a special command-line utility that specifies the remote branch

and directory. When you have multiple branches and directory, then this command assists

you in determining your main branch and repository.

Generally, the term origin stands for the remote repository, and master is considered as the

main branch. So, the entire statement "git push origin master" pushed the local content on

the master branch of the remote location.

Syntax:

1. $ git push origin master

Let's understand this statement with an example.

Let's make a new commit to my existing repository, say GitExample2. I have added an

image to my local repository named abc.jpg and committed the changes. Consider the

below

image:

In the above output, I have attached a picture to my local repository. The git status

command is used to check the status of the repository. The git status command will be

performed as follows:

1. $ git status

It shows the status of the untracked image abc.jpg. Now, add the image and commit the

changes as:

1. $ git add abc.jpg

145 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

2. $git commit -m "added a new image to project."

The image is wholly tracked in the local repository. Now, we can push it to origin master as:

1. $ git push origin master

Output:

The file abc.jpg is successfully pushed to the origin master. We can track it on the remote

location. I have pushed these changes to my GitHub account. I can track it there in my

repository. Consider the below image:

In the above output, the pushed file abc.jpg is uploaded on my GitHub account's master

branch repository.

1.2 Git Force Push

The git force push allows you to push local repository to remote without dealing with

conflicts. It is used as follows:

1. $ git push <remote><branch> -f

146 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Or

1. $ git push <remote><branch> -force

The -f version is used as an abbreviation of force. The remote can be any remote location

like GitHub, Subversion, or any other git service, and the branch is a particular branch name.

For example, we can use git push origin master -f.

We can also omit the branch in this command. The command will be executed as:

1. $git push <remote> -f

We can omit both the remote and branch. When the remote and the branch both are

omitted, the default behavior is determined by push.default setting of git config. The

command will be executed as:

1. $ git push -f

How to Safe Force Push Repository:

There are several consequences of force pushing a repository like it may replace the work

you want to keep. Force pushing with a lease option is capable of making fail to push if there

are new commits on the remote that you didn't expect. If we say in terms of git, then we

can say it will make it fail if remote contains untracked commit. It can be executed as:

1. $git push <remote><branch> --force-with-lease

Git push -v/--verbose

The -v stands for verbosely. It runs command verbosely. It pushed the repository and gave

a detailed explanation about objects. Suppose we have added a newfile2.txt in our local

repository and commit it. Now, when we push it on remote, it will give more description

than the default git push. Syntax of push verbosely is given below:

Syntax:

1. $ git push -v Or $ git push --verbose

Consider the below output:

147 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

If we compare the above output with the default git option, we can see that git verbose

gives descriptive output.

2. Delete a Remote Branch

We can delete a remote branch using git push. It allows removing a remote branch from

the command line. To delete a remote branch, perform below command:

Syntax:

1. $ git push origin -delete edited

Output:

In the above output, the git push origin command is used with -delete option to delete a

remote branch. I have deleted my remote branch edited from the repository. Consider the

below image:

It is a list of active branches of my remote repository before the operating command.

148 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

The above image displays the list of active branches after deleting command. Here, you can

see that the branch edited has removed from the repository.

• Tags in Git are used to mark specific points in history, such as releases or important c

ommits.

• There are the tags used with the git push command like :<repository>,<refspec>,--all,

--prune,--mirror,--dry-run,--tags.

• To push files to a remote branch in Git, you typically follow these steps:

1. Add and Commit Changes

2. Check Remote Repository Status

3. Fetch and Pull Changes

4. Push Changes to Remote Branch

5. Verify Changes on Remote Repository

As a member of a team project called "TechApp" using Git for version control. You are asked

to implement a new feature and merge it into the main codebase. However, you face

challenges along the way. You start by pushing your local changes to the "origin master"

branch to make them accessible to your team. Later, you encounter conflicts with recent

updates from others, requiring you to forcefully update the remote repository. To monitor

the push process, you use the verbose option, which provides detailed information about the

operation. Finally, after successfully merging your changes, you delete the remote branch that

is no longer needed. Through effective communication and proper use of Git commands, you

ensure smooth collaboration and maintain a clean repository.

Points to Remember

Application of learning 3.2.

149 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Indicative content 3.3: Merge branches on remote repository

1: In small groups, you are requested to answer the following questions related to the merge

branches on remote:

I. Can you discuss the operation on git rebase command, pull requests, operation on git

merge.

2: Provide the answer for the asked questions and write them on papers.

3: Present the findings/answers to the whole class

4: For more clarification, read the key readings 3.3.1. In addition, ask questions where

necessary.

Key readings 3.3.1.: Description of merge branches on remote repository

1.Git Rebase

Rebasing is a process to reapply commits on top of another base trip. It is used to apply a

sequence of commits from distinct branches into a final commit. It is an alternative of git

merge command. It is a linear process of merging.

In Git, the term rebase is referred to as the process of moving or combining a sequence of

commits to a new base commit. Rebasing is very beneficial and it visualized the process in

the environment of a feature branching workflow.

git rebase is a Git command used to reapply a series of commits from one branch onto

another branch. It allows you to rewrite the commit history of the current branch by

incorporating changes from another branch, typically the branch specified as the new base.

Here is the basic syntax for the git rebase command:

<base>: The branch or commit onto which you want to reapply the commits from the

current branch. This can be a branch name or a commit hash.

When you run git rebase <base>, Git performs the following actions:

 Identifies the common ancestor commit between the current branch and the

specified <base> branch.

 Retrieves the commits unique to the current branch since the common ancestor.

Duration: 7hrs

Theoretical Activity 3.3.1: Description of merge branches on remote

repository

Tasks:

150 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

 "Replays" each of these commits onto the <base> branch one by one, effectively

incorporating the changes into the target branch.

 Moves the current branch pointer to the tip of the rebased commits, effectively

rewriting the branch history.

In cases where conflicts occur during the rebase process, Git will pause the rebase operation

and prompt you to resolve the conflicts manually. After resolving conflicts, you can continue

the rebase operation using git rebase --continue. If you encounter issues or decide to abort

the rebase, you can use git rebase --abort to revert to the state before the rebase began.

git rebase is a Git command used to reapply a series of commits from one branch onto

another branch. It allows you to rewrite the commit history of the current branch by

incorporating changes from another branch, typically the branch specified as the new base.

Here is the basic syntax for the git rebase command:

git rebase <base>

● <base>: The branch or commit onto which you want to reapply the commits from

the current branch. This can be a branch name or a commit hash.

When you run git rebase <base>, Git performs the following actions:

 Identifies the common ancestor commit between the current branch and the

specified <base> branch.

 Retrieves the commits unique to the current branch since the common ancestor.

 "Replays" each of these commits onto the <base> branch one by one, effectively

incorporating the changes into the target branch.

 Moves the current branch pointer to the tip of the rebased commits, effectively

rewriting the branch history.

In cases where conflicts occur during the rebase process, Git will pause the rebase operation

and prompt you to resolve the conflicts manually. After resolving conflicts, you can continue

the rebase operation using git rebase -continue. If you encounter issues or decide to abort

the rebase, you can use git rebase -abort to revert to the state before the rebase began.

It's essential to use git rebase carefully, especially when working with shared branches, as

it alters the commit history. Rewriting history can cause confusion and conflicts for

collaborators who have based their work on the original branch. Therefore, it's crucial to

communicate with team members before performing rebases on shared branches.

It is good to rebase your branch before merging it.

151 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Figure18: Git rebase

Generally, it is an alternative of git merge command. Merge is always a forward changing

record. Comparatively, rebase is a compelling history rewriting tool in git. It merges the

different commits one by one.

Suppose you have made three commits in your master branch and three in your other

branch named test. If you merge this, then it will merge all commits in a time. But if you

rebase it, then it will be merged in a linear manner. Consider the below image:

Figure 19 : Merging after git rebase

The above image describes how git rebase works. The three commits of the master branch

are merged linearly with the commits of the test branch.

Merging is the most straightforward way to integrate the branches. It performs a three-way

merge between the two latest branch commits.

When using the `git rebase` command in Git, there are several key operations and steps

involved in the process:

152 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

1. Start a Rebase: Begin the rebase operation by running `git rebase <base-branch>`, where

`<base-branch>` is the branch you want to rebase onto. This command sets the base for the

rebase operation.

2. Resolve Conflicts: During the rebase process, Git may encounter conflicts if changes in

the current branch conflict with changes in the base branch. You need to resolve these

conflicts by editing the conflicting files, marking them as resolved, and continuing the

rebase.

3. Continue Rebase: After resolving conflicts, continue the rebase process by using `git

rebase --continue`. Git will apply the remaining commits on top of the base branch.

4. Abort Rebase: If you encounter issues during the rebase process and want to abort it,

you can use `git rebase --abort` to return to the state before the rebase started.

5. Skip Commits: In some cases, you may want to skip applying certain commits during the

rebase. You can do this by using `git rebase --skip` for the specific commit you want to skip.

6. Edit Commits: You can edit, squash, or reorder commits during the rebase process using

interactive rebase by running `git rebase -i`.

7. Push Changes: Once the rebase is complete and the branch is updated with the new

commit history, you can push the changes to the remote repository using `git push`.

2. Git Pull Request

Pull request allows you to announce a change made by you in the branch. Once a pull

request is opened, you are allowed to converse and review the changes made by others. It

allows reviewing commits before merging into the main branch.

Pull request is created when you committed a change in the GitHub project, and you want

it to be reviewed by other members. You can commit the changes into a new branch or an

existing branch.

Once you've created a pull request, you can push commits from your branch to add them

to your existing pull request.

3. Git Merge and Merge Conflict

In Git, the merging is a procedure to connect the forked history. It joins two or more

development history together. The git merge command facilitates you to take the data

created by git branch and integrate them into a single branch. Git merge will associate a

series of commits into one unified history. Generally, git merge is used to combine two

branches.

153 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Figure 20: Merge branches

It is used to maintain distinct lines of development; at some stage, you want to merge the

changes in one branch. It is essential to understand how merging works in Git.

In the above figure, there are two branches master and feature. We can see that we made

some commits in both functionality and master branch, and merge them. It works as a

pointer. It will find a common base commit between branches. Once Git finds a shared base

commit, it will create a new "merge commit." It combines the changes of each queued

merge commit sequence.

4. Git Merge Conflict

When two branches are trying to merge, and both are edited at the same time and in the

same file, Git won't be able to identify which version is to take for changes. Such a situation

is called merge conflict. If such a situation occurs, it stops just before the merge commit so

that you can resolve the conflicts manually.

Figure 21: Merge conflict

154 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

1: Read key reading 3.3.2 and ask clarification where necessary

2: Referring to the previous theoretical activities (3.3.1) you are requested to go to the

computer lab to merge branches on remote repository. This task should be done individually.

3: Apply safety precautions.

4: Present out the steps of merging branches on remote repository.

5: Referring to the steps provided on task 3, merge branches on remote repository.

6: Present your work to the trainer and whole class

Key readings 3.3.2: Applying Git merge commands

1. Merging branches

Merging branches on a remote repository involves several steps. Below are the general

steps to merge branches on a remote repository, assuming you're using Git:

1. Fetch Remote Changes: Before merging branches, ensure you have the latest changes

from the remote repository. Use the following command to fetch the latest changes:

 Replace origin with the name of your remote repository if it's different.

2.Checkout the Target Branch: Switch to the branch into which you want to merge the

changes. For example, to merge changes into the master branch:

3. Merge the Branch: Merge the changes from the source branch into the target branch

using the git merge command. For instance, if you want to merge changes from a branch

named feature-branch into master:

 This command will merge the changes from feature-branch into the currently

checked out branch (in this case, master).

Practical Activity 3.3.2: Merging branches on remote repository

Task:

155 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

4. Resolve Conflicts (if any): If there are conflicts between the changes in the branches

being merged, Git will prompt you to resolve them. Open the conflicted files, resolve the

conflicts, and then stage the changes.

5.Commit the Merge: After resolving conflicts, commit the merge changes:

 This commits the merge, incorporating the changes from the source branch into the

target branch.

6.Push Changes to Remote Repository: Finally, push the merged changes to the remote

repository:

 Replace master with the name of your target branch if it's different. This command

will update the remote repository with the merged changes.

7.Delete Source Branch (Optional): If you've finished with the source branch and no longer

need it, you can delete it using:

Or, to delete it remotely as well:

This step is optional and should be performed only if you're certain the branch is no longer

needed.

2. Git rebase

When you made some commits on a feature branch (test branch) and some in the master

branch. You can rebase any of these branches. Use the git log command to track the

changes (commit history). Checkout to the desired branch you want to rebase. Now

perform the rebase command as follows:

Syntax:

 $git rebase <branch name>

If there are some conflicts in the branch, resolve them, and perform below commands to

156 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

continue changes:

$ git status

It is used to check the status,

$git rebase --continue

The above command is used to continue with the changes you made. If you want to skip

the change, you can skip as follows:

1. $ git rebase --skip

When the rebasing is completed. Push the repository to the origin. Consider the below

example to understand the git merge command.

Suppose that you have a branch say test2 on which you are working. You are now on the

test2 branch and made some changes in the project's file newfile1.txt.

Add this file to repository:

1. $ git add newfile1.txt

Now, commit the changes. Use the below command:

1. $ git commit -m "new commit for test2 branch."

The output will look like:

[test2 a835504] new commit for test2 branch

 1 file changed, 1 insertion(+)

Switch the branch to master:

1. $ git checkout master

Output:

Switched to branch 'master.'

Your branch is up to date with 'origin/master.'

Now you are on the master branch. I have added the changes to my file, says newfile.txt.

The below command is used to add the file in the repository.

1. $ git add newfile.txt

Now commit the file for changes:

1. $ git commit -m "new commit made on the master branch."

157 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Output:

[master 7fe5e7a] new commit made on master

 1 file changed, 1 insertion (+)

HiMaNshU@HiMaNshU-PC MINGW64 ~/Desktop/GitExample2 (master)

2.1 Rebase Branch

If we have many commits from distinct branches and want to merge it in one. To do so, we

have two choices either we can merge it or rebase it. It is good to rebase your branch.

From the above example, we have committed to the master branch and want to rebase it

on the test2 branch. Let's see the below commands:

1. $ git checkout test2

This command will switch you on the test2 branch from the master.

Output:

Switched to branch 'test2.'

Now you are on the test2 branch. Hence, you can rebase the test2 branch with the master

branch. See the below command:

1. $ git rebase master

This command will rebase the test2 branch and will show as Applying: new commit on

test2 branch. Consider the below output:

Output:

3. Pull Request

To create a pull request, you need to create a file and commit it as a new branch. As we

mentioned earlier in this topic, how to commit a file to use git pull. Select the option "create

a new branch for this commit and start a pull request" from the bottom of the page. Give

the name of the new branch. Select the option to propose a new file at the bottom of the

page. Consider the below image.

158 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

In the above image, I have selected the required option and named the file

as PullRequestDemo. Select the option to propose a new file. It will open a new page. Select

the option create pull request. Consider the below image:

Now, the pull request is created by you. People can see this request. They can merge this

request with the other branches by selecting a merged pull request.

Use of "git merge" command

4. apply git merge operations

The git merge command is used to merge the branches.

The syntax for the git merge command is as:

159 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

1. $ git merge <query>

It can be used in various context. Some are as follows:

Scenario1: To merge the specified commit to currently active branch:

Use the below command to merge the specified commit to currently active branch.

1. $ git merge <commit>

The above command will merge the specified commit to the currently active branch. You

can also merge the specified commit to a specified branch by passing in the branch name

in <commit>. Let's see how to commit to a currently active branch.

See the below example. I have made some changes in my project's file newfile1.txt and

committed it in my test branch.

Copy the particular commit you want to merge on an active branch and perform the merge

operation. See the below output:

160 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

In the above output, we have merged the previous commit in the active branch test2.

Scenario2: To merge commits into the master branch:

To merge a specified commit into master, first discover its commit id. Use the log command

to find the particular commit id.

1. $git log

See the below output:

To merge the commits into the master branch, switch over to the master branch.

1. $ git checkout master

Now, Switch to branch 'master' to perform merging operation on a commit. Use the git

merge command along with master branch name. The syntax for this is as follows:

1. $ git merge master

See the below output:

As shown in the above output, the commit for the commit

161 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

id 2852e020909dfe705707695fd6d715cd723f9540 has merged into the master branch.

Two files have changed in master branch. However, we have made this commit in

the test branch. So, it is possible to merge any commit in any of the branches.

Open new files, and you will notice that the new line that we have committed to the test

branch is now copied on the master branch.

Scenario 3: Git merge branch.

Git allows merging the whole branch in another branch. Suppose you have made many

changes on a branch and want to merge all of that at a time. Git allows you to do so. See

the below example:

In the given output, I have made changes in newfile1 on the test branch. Now, I have

committed this change in the test branch.

Now, switch to the desired branch you want to merge. In the given example, I have switched

to the master branch. Perform the below command to merge the whole branch in the active

branch.

1. $ git merge <branchname>

As you can see from the given output, the whole commits of branch test2 have merged to

branch master.

5. Git Merge Conflict

Let's understand it by an example.

Suppose my remote repository has cloned by two of my team member user1 and user2.

The user1 made changes as below in my projects index file.

162 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Update it in the local repository with the help of git add command.

Now commit the changes and update it with the remote repository. See the below output:

Now, my remote repository will look like this:

It will show the status of the file like edited by whom and when.

Now, at the same time, user2 also update the index file as follows.

163 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

User2 has added and committed the changes in the local repository. But when he tries to

push it to remote server, it will throw errors. See the below output:

In the above output, the server knows that the file is already updated and not merged with

other branches. So, the push request was rejected by the remote server. It will throw an

error message like [rejected] failed to push some refs to <remote URL>. It will suggest you

to pull the repository first before the push. See the below command:

164 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

In the given output, git rebase command is used to pull the repository from the remote

URL. Here, it will show the error message like merge conflict in <filename>.

5.1 Resolve Conflict:

To resolve the conflict, it is necessary to know whether the conflict occurs and why it occurs.

Git merge tool command is used to resolve the conflict. The merge command is used as

follows:

1. $ git mergetool

In my repository, it will result in:

165 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

The above output shows the status of the conflicted file. To resolve the conflict, enter in

the insert mode by merely pressing I key and make changes as you want. Press the Esc key,

to come out from insert mode. Type the: w! at the bottom of the editor to save and exit

the changes. To accept the changes, use the rebase command. It will be used as follows:

1. $ git rebase --continue

Hence, the conflict has resolved. See the below output:

166 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

In the above output, the conflict has resolved, and the local repository is synchronized with

a remote repository.

To see that which is the first edited text of the merge conflict in your file, search the file

attached with conflict marker <<<<<<<. You can see the changes from the HEAD or base

branch after the line <<<<<<< HEAD in your text editor. Next, you can see the divider

like =======. It divides your changes from the changes in the other branch, followed by

>>>>>>> BRANCH-NAME. In the above example, user1 wrote "<h1> Git is a version

control</h1>" in the base or HEAD branch and user2 wrote "<h2> Git is a version

control</h2>".

Decide whether you want to keep only your branch's changes or the other branch's

changes, or create a new change. Delete the conflict markers <<<<<<<, =======,

>>>>>>> and create final changes you want to merge.

● The `git rebase` command in Git allows you to reapply a series of commits on top of a

nother base commit, effectively moving the entire branch to begin from the tip of an

other branch. Key operations involved in using `git rebase` include starting a rebase,R

esolve Conflicts,Continue Rebase,Abort Rebase,Skip Commits,Skip Commits.

● To merge branches on a remote repository in Git, you typically follow these steps:

 1.Fetch Remote Changes

 2. Checkout the Target Branch

 3.Merge the Branch

 4.Push Changes to Remote Repository

Points to Remember

167 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

MyApp is a web application project targeted at enhancing the user authentication procedure

that is being worked on by a team of developers. The following actions were carried out by

the appropriate team members. The developer, John, used the "git rebase" command to

merge the most recent modifications from the main branch into his feature branch, ensuring

that his improvements were based on the most recent codebase. Sarah, the team leader,

issued a pull request to merge John's branch into the main branch, allowing for easier

collaboration and review. This enabled the team to handle the issue as a whole and confirm

that the proposed solution was in line with the project's goals and criteria. Finally, after

reading and approving “this is merging exercise” pull request, David as project manager use

the merge procedure, thereby Implementing the upgraded user authentication feature

properly and contributing to the overall solution of improving the application's security and

user experience.

 Application of learning 3.3.

168 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Learning outcome 3 end assessment

1. Which of these Git client commands creates a copy of the repository and a working

directory in the client’s workspace. (Choose one.)

a) update

b) checkout

c) clone

d) import

e) None of the above

2. True or False? In Git, if you want to make your local repository reflect changes that have

been made in a remote (tracked) repository, you should run the pull command.

a) True

b) False

3. Now, imagine that you have a local repository, but other team members have pushed

changes into the remote repository. What Git operation would you use to download those

changes into your working copy?

a) checkout

b) commit

c) export

d) pull

e) update

f) a, b, and c

4. fill-in-the-blank space related to fetching, pulling, and pushing files in Git

a) To fetch changes from a remote repository without merging them into your local

branch, you use the command `git __________`.

b) To fetch changes from a remote repository and merge them into your local branch,

you use the command `git __________`.

c) To upload your local repository changes to a remote repository, you use the command

`git __________ origin <branch-name>`.

d) To see the status of your local repository, including which branch you are on and any

changes that are staged for commit, you use the command `git __________`.

e) To add all changes in your working directory to the staging area, you use the command

`git __________ `.

f) To commit your staged changes with a message, you use the command `git

__________ -m "Your commit message"`.

g) To create a connection to a new remote repository, you use the command `git remote

__________ <name> <URL>`.

h) To view the details of your remote repository connections, you use the command `git

remote __________`.

Theoretical assessment

169 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

5. Match the operations with corresponding commands

Operation Command

Fetch changes from remote repository a. git fetch

Fetch and merge changes from remote b. git pull

Push changes to remote repository c. git push origin <branch-name>

See the status of the local repository d. git status

Add all changes to the staging area e. git add .

Commit staged changes with a message f. git commit -m "Your commit message"

Create a connection to a remote repo g. git remote add <name> <URL>

ABC Software Solutions is a leading software development company, Alex and Sarah are two

experienced developers who need to collaborate on a project aimed at resolving a critical bug

in a mission-critical software system for a major client. The bug has caused disruptions in the

client's operations, and immediate attention is required to rectify the issue. Alex takes on the

responsibility of simulating updates from the client and making changes to a separate branch

to identify the root cause of the bug. Additionally, Alex merges the client's changes into their

branch to test potential fixes and improve the overall stability of the system. Throughout the

process, Alex actively contributes by making modifications, committing them, and pushing

their branch to the remote repository, ensuring that the bug fixes are well-documented and

can be easily shared with the client. Sarah, an integral team member, communicates her

additional changes to Alex, addressing specific edge cases and proposing enhancements to

optimize the software system's performance. After pushing her branch to the remote

repository, Alex ensures synchronization by fetching Sarah's updated branch and merging it

into their own, incorporating the valuable contributions made by Sarah. ABC Software

Solutions demonstrates their commitment to providing high-quality software solutions and

meeting their client's critical needs by leveraging efficient collaboration, version control, and

code management practices to swiftly address and resolve complex problems in their client's

software systems.

Practical assessment

170 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

References

JavaTpoint. (n.d.). Git Pull. Retrieved from https://www.javatpoint.com/git-pull

JavaTpoint. (n.d.). Git Push. Retrieved from https://www.javatpoint.com/git-push

Varonis. (n.d.). Git Branching: A guide to working with branches. Retrieved from

https://www.varonis.com/blog/git-branching

TutorialsPoint. (n.d.). Git Managing Branches. Retrieved from

https://www.tutorialspoint.com/git/git_managing_branches.htm

Atlassian. (n.d.). Git Merge: Everything you need to know about merge in Git. Retrieved

from https://www.atlassian.com/git/tutorials/using-branches/git-merge

https://www.javatpoint.com/git-pull
https://www.javatpoint.com/git-push
https://www.varonis.com/blog/git-branching
https://www.tutorialspoint.com/git/git_managing_branches.htm
https://www.atlassian.com/git/tutorials/using-branches/git-merge

171 | V e r s i o n c o n t r o l – T r a i n e e M a n u a l

Mm, YYY

October , 2024

