- canrmeg conon @

RQF LEVEL 3

VERSION
O 'Co N T RQ SWDVC301

SOFTWARE
DEVELOPMENT

Version Control

TRAINEE'S MANUAL

October, 2024

2

RTB | Ver'soaro

VERSION CONTROL

KDICA- T QUM

Korea International
Cooperation Agency TVET Quality Management Project

2024

The competent development body of this manual is Rwanda TVET Board ©, reproduce with

permission.

All rights reserved.

This work has been produced initially with the Rwanda TVET Board with the support

from KOICA through TQUM Project

e This work has copyright, but permission is given to all the Administrative and Academic
Staff of the RTB and TVET Schools to make copies by photocopying or other duplicating
processes for use at their own workplaces.

e This permission does not extend to making of copies for use outside the immediate
environment for which they are made, nor making copies for hire or resale to third
parties.

o The views expressed in this version of the work do not necessarily represent the views
of RTB. The competent body does not give warranty nor accept any liability

e RTB owns the copyright to the trainee and trainer’s manuals. Training providers may

reproduce these training manuals in part or in full for training purposes only.

Acknowledgment of RTB copyright must be included on any reproductions. Any other

use of the manuals must be referred to the RTB.

© Rwanda TVET Board
Copies available from:
o HQs: Rwanda TVET Board-RTB

o Web: www.rth.gov.rw

o KIGALI-RWANDA

Original published version: October 2024

iii|]Version control — Trainee Manual

http://www.rtb.gov.rw/

The publisher would like to thank the following for their assistance in the elaboration of this

training manual:

Rwanda TVET Board (RTB) extends its appreciation to all parties who contributed to the
development of the trainer’s and trainee’s manuals for the TVET Certificate Ill in Software
development, specifically for the module "SWDVC301: Version Control."

We extend our gratitude to KOICA Rwanda for its contribution to the development of these
training manuals and for its ongoing support of the TVET system in Rwanda.

We extend our gratitude to the TQUM Project for its financial and technical support in the

development of these training manuals.

We would also like to acknowledge the valuable contributions of all TVET trainers and industry

practitioners in the development of this training manual.

The management of Rwanda TVET Board extends its appreciation to both its staff and the

staff of the TQUM Project for their efforts in coordinating these activities.

iv|Version control — Trainee Manual

This training manual was developed:

Under Rwanda TVET Board (RTB) guiding policies and directives

)

RTB | Wersoaro

Under Financial and Technical support of

KOICA-TQUM

Korea International
Cooperation Agency TVET Quality Management Project

v|i|Version control — Trainee Manual

COORDINATION TEAM

RWAMASIRABO Aimable
MARIA Bernadette M. Ramos
MUTUIMA Asher Emmanuel

PRODUCTION TEAM

Authoring and Review
MUKESHIMANA Anastase
BIZIMUNGU Damien

Validation
NYABUHORO Elisabeth
HABIGENA Alexandre
KWIZERA Emmanuel

Conception, Adaptation and Editorial works
HATEGEKIMANA Olivier
GANZA Jean Francois Regis

HARELIMANA Wilson
NZABIRINDA Aimable

DUKUZIMANA Therese

NIYONKURU Sylvestre

BIZIMANA Eric

Formatting, Graphics, lllustrations, and infographics

YEONWOO Choe
SUA Lim
SAEM Lee
SOYEON Kim
WONYEONG Jeong
HAKIZAYEZU Adrien

Financial and Technical support
KOICA through TQUM Project

vi|Version control — Trainee Manual

AUTHOR'’S NOTE PAGE (COPYRIGHT)

ACKNOWLEDGEMENTS iv
TABLE OF CONTENT vii
ACRONYMS viii
INTRODUCTION 1
MODULE CODE AND TITLE: SWDVC301 VERSION CONTROL 2
Learning Outcome 1: Setup Repository 3
Key Competencies for Learning Outcome 1: Setup Repository 4
Indicative content 1.1: introduction to version control 6
Indicative content 1.2: Description of Git 21
Indicative content 1.3: Use of GitHub repository 47
Learning outcome 1 end assessment 60
References 63
Learning Outcome 2: Manipulate Files 64
Key Competencies for Learning Outcome 2: Manipulate files 65
Indicative content 2.1: Add file change to Git staging area 67

Indicative content 2.2: Commit File changes to git local repository and manage branch--87

Learning outcome 2 end assessment

References

Learning Outcome 3: Ship Codes

Key Competencies for Learning Outcome 3: Ship codes.

Indicative content 3.1: Fetch file from GitHub repository

Indicative content 3.2: Push files to remote branch
Indicative content 3.3: Merge branches on remote repository

Learning outcome 3 end assessment

References

vii|Version control — Trainee Manual

117
119
120
121
123
138
149
168
170

CBT: Competency-Based Training

CMD: command prompt

CVS: Concurrent Version System

Git: Global information tracker

INIT: Initialization

Rm: Remove

RTB: Rwanda TVET Board

SVN: subversion

TQUM Project: TVET Quality Management Project
TVET: Technical and Vocational Education and Training
URL: Uniform resource locator

vii|Version control — Trainee Manual

about:blank

This trainee's manual includes all the knowledge and skills required in Software development

specifically for the module of "Version Control". Trainees enrolled in this module will engage
in practical activities designed to develop and enhance their competencies. The development
of this training manual followed the Competency-Based Training and Assessment (CBT/A)

approach, offering ample practical opportunities that mirror real-life situations.

The trainee's manual is organized into Learning Outcomes, which is broken down into
indicative content that includes both theoretical and practical activities. It provides detailed
information on the key competencies required for each learning outcome, along with the

objectives to be achieved.

As a trainee, you will start by addressing questions related to the activities, which are
designed to foster critical thinking and guide you towards practical applications in the labor
market. The manual also provides essential information, including learning hours, required

materials, and key tasks to complete throughout the learning process.

All activities included in this training manual are designed to facilitate both individual and
group work. After completing the activities, you will conduct a formative assessment, referred
to as the end learning outcome assessment. Ensure that you thoroughly review the key

readings and the 'Points to Remember' section.

1|Version control — Trainee Manual

MODULE CODE AND TITLE: SWDVC301 VERSION CONTROL

Learning Outcome 1: Setup repository

Learning Outcome 2: Manipulate files

Learning Outcome 3: Ship codes

2|Version control — Trainee Manual

w (V) o
() GitHub L\) Pt

3|Version control — Trainee Manual

Indicative contents

1.1 Introduction to version control

1.2 Description of Git

1.3 Use of GitHub repository

Key Competencies for Learning Outcome 1: Setup Repository

Knowledge Skills Attitudes
e Description of version Using CMD terminal Being Problem solver
control commands for directory Have Team work spirit
e Description of Terminals management Have critical thinking
used in version control Installing Git Being self-motivation

e Description of Git
e Description of GitHub

Preparing Git
environment
Configuring
file

Creating local repository
Creating GitHub
account

.gitignore

Creating new remote
repository

Applying Git commands
related to repository

Being Adaptability
Being Practical oriented

4|Version control — Trainee Manual

Duration:20 hrs

Learning outcome 1 objectives:

&@

By the end of the learning outcome, the trainees will be able to:

1. Describe clearly version control based on software development process

2. Use correctly terminals based on computer system available

3. Prepare properly Git environment based on Git command

4. Create properly Git Repository based on the project requirements

5. Create correctly GitHub account based on project requirement

6. Create correctly remote repository based on software development standard

7. Set properly Remote URL in accordance with Git commands.

-7. EA
MResources

Equipment Tools Materials
e Computer o Git e Internet
e GitHub e Electricity
e Text editor (vs code)
e Terminal (CMD, Gitbash).

5|Version control — Trainee Manual

—

_ | Indicative content 1.1: introduction to version control
\/ Duration: 5 hrs

2 Theoretical Activity 1.1.1: Description of version control
AR

__
Things to Do
A \\ Tasks:

1: you are requested to answer the following questions related to the Version Control:
1. What do you understand about Version Control?
2. Whatis Terminal in software development

3. Describe the Different types of version control systems
4. Where version control is applied
5. What are the benefits of version control?
2: Provide your answers to papers.
3: Present the findings/answers to the whole class or trainer
4: For more clarification, read the key readings 1.1.1. In addition, ask questions where
necessary.

g
v Key readings 1.1.1: Introduction to version control
1. Definition of Version control
Version control is a system that records changes to a file or set of files over time so that you
can recall specific versions later. As the name Version Control suggests, it is a system that
records changes made to afile or a set of files. The system refers to the category of software
tools that make it possible for the software team to look after the source code changes
whenever needed. The system records all the made changes to a file so a specific version
may be rolled if required in the future.
The responsibility of the Version control system is to keep all the team members on the
same page. It makes sure that everyone on the team is working on the latest version of the
file and, most importantly, makes sure that all these people can work simultaneously on
the same project.
The responsibility of the Version control system is to keep all the team members on the
same page. It makes sure that everyone on the team is working on the latest version of the
file and, most importantly, makes sure that all these people can work simultaneously on
the same project.
Let's try to understand the process with the help of this diagram:
There are 3 workstations or three different developers at three other locations, and there's
one repository acting as a server. The work stations are using that repository either for the
process of committing or updating the tasks.

6|Version control — Trainee Manual

Server

Repository

Q c
O

3 2
3 2
= ®

Working copy Working copy Working copy
Workstation 1 Workstation 2 Workstation 3

Figure 1: Example of version control

There may be a large number of workstations using a single server repository. Each
workstation will have its working copy, and all these workstations will be saving their source
codes into a particular server repository.

This makes it easy for any developer to access the task being done using the repository. If
any specific developer's system breaks down, then the work won't stop, as there will be a
copy of the source code in the central repository.

For example, if you are working on a long report or a collaborative document, Use version
control to track changes to the document, review history, and revert to previous versions if
necessary. Tools like Google Docs or Microsoft Word with version history features are great
for this.

Secondly, Multiple developers work on the same project, each handling different features
or fixes use Version Control to Create branches for each feature or fix, allowing developers
to work independently without interfering with each other's code. Merge branches into the
main codebase once the changes are reviewed and tested.

2. Types of version control system
2.1. Centralized version control

I”

With centralized version control systems, you have a single “central” copy of your project
on a server and commit your changes to this central copy.

A centralized version control system offers software development teams a way to
collaborate using a central server. In a centralized version control system (CVCS), a server
acts as the main repository which stores every version of code.

You pull the files that you need, but you never have a full copy of your project locally. Some
of the most common version control systems are centralized, including Subversion (SVN)

and Perforce.

7|Version control — Trainee Manual

Centralized version control systems have many benefits, especially over local version
control systems(VCSs).
e Everyone on the system has information about the work that others are doing on
the project.
e Administrators have control over other developers.
e ltis easier to deal with a centralized version control system than a localized version
control system.
e Alocal version control system facilitates a server software component that stores
and manages the different versions of the files.
It also has the same drawback as in the local version control system that it also has a single
point of failure.

Central VCS Server Computer A

Version Database Checkout

Version 2 Computer B

Checkout

Figure 2: Centralized Version Control

Centralized Version Control System uses a central server to store all the database and team
collaboration. But due to single point failure, which means the failure of the central server,
developers do not prefer it. Next, the Distributed Version Control System is developed.

In centralized version control, there is a single central repository where all files and changes
are stored. Developers check out files from this central repository, make changes, and then

check the files back in. The central repository holds the full history of changes.

Examples:

8|Version control — Trainee Manual

e SVN (Subversion): SVN is a centralized version control system designed as a
successor to CVS, offering features for version tracking, revision management, and
team collaboration with a centralized repository model.

e It is A popular centralized version control system known for its simplicity and ease
of use.

o Perforce: Often used in large enterprises and gaming industries for its performance
and scalability.

e CVS (Concurrent Version System): CVSis an older centralized version control system
that allows multiple developers to work on the same codebase concurrently,
managing file versions and facilitating collaboration.

2.2. Distributed version control

In a Distributed Version Control System (such as Git, Mercurial, Bazaar, or Darcs), the user
has a local copy of a repository. So, the clients don't just check out the latest snapshot of
the files even they can fully mirror the repository. The local repository contains all the files
and metadata present in the main repository.

With distributed version control systems (DVCS), you don't rely on a central server to store
all the versions of a project’s files. Instead, you clone a copy of a repository locally so that
you have the full history of the project. Two common distributed version control systems
are Git and Mercurial.

While you don't have to have a central repository for your files, you may want one "central"
place to keep your code so that you can share and collaborate on your project with others.
That's where Bitbucket comes in. Keep a copy of your code in a repository on Bitbucket so
that you and your teammates can use Git or Mercurial locally and to push and pull code.
Distributed version control system allows automatic management branching and merging.
It speeds up most operations except pushing and pulling. Distributed version control system
enhances the ability to work offline and does not rely on a single location for backups. If
any server stops and other systems were collaborating via it, then any of the client
repositories could be restored by that server. Every checkout is a full backup of all the data.
In distributed version control, every user has a complete copy of the repository, including
its history. This allows for offline work and more robust branching and merging capabilities.
Users can work independently and then synchronize changes with others.

Examples:

e Git: The most widely used distributed version control system, known for its
branching and merging capabilities. Git is the backbone of platforms like GitHub,
GitLab, and Bitbucket.

Itis used in software development for tracking changes, enabling collaboration, and
providing efficient version control.

9|Version control — Trainee Manual

e Mercurial: Another distributed version control system, similar to Git but with a
different command structure and workflow.

o It provides features for tracking changes, managing revisions, and supporting
collaboration among developers.

Server Computer

Version Database

Version 3

Version 2

Version 1

Computer B
Version Database

Computer A
Version Database

Figure 3: Distributed Version Control

2.3 Local version control

A local version control system is a local database located on your local computer, in which
every file change is stored as a patch.
The localized version control method is a common approach because of its simplicity. But
this approach leads to a higher chance of error. In this approach, you may forget which
directory you're in and accidentally write to the wrong file or copy over files you don't want
to.
To deal with this issue, programmers developed local VCSs that had a simple database. Such
databases kept all the changes to files under revision control. A local version control system
keeps local copies of the files.

The major drawback of Local VCS is that it has a single point of failure.

Local version control systems are simpler and store changes to files locally on a single
machine. They are less suited for collaborative work but can be useful for individual
developers to keep track of changes on their local files.

Examples:

10| Version control — Trainee Manual

¢ RCS (Revision Control System): A simple local version control system that manages
individual files and their revisions.

e SCCS (Source Code Control System): An older local version control system that was
commonly used for managing source code.

Local Computer

Version Database

Checkout

Version 3

Version 2

Version 1

Figure 4: Local Version Control

3.Application of version control

Version control systems find applications in various industries and software development
scenarios:

Software Development: Used extensively to manage source code, enable collaboration,
and maintain code integrity throughout the development process.

Web Development: Crucial for coordinating efforts, sharing code, and managing versions
in web development projects.

Mobile App Development: Essential for managing codebases across iOS and Android
platforms, ensuring consistency and facilitating collaboration.

Data Science and Machine Learning: Enables reproducibility of experiments, tracks changes
to code and data files, and fosters collaboration among data scientists.

Game Development: Facilitates collaboration among artists, programmers, and designers,
ensuring synchronized development of game assets and code.

11|Version control — Trainee Manual

Documentation and Technical Writing: Helps authors track changes, collaborate with
reviewers, and maintain a history of revisions for documentation projects.

Open-Source Projects: Fundamental for distributed collaboration, code sharing, and
managing contributions and releases in open-source software development.
Configuration Management: Tracks changes to configuration files, infrastructure code, and
deployment scripts, ensuring well-documented and reproducible configurations.
Academic Research and Collaborative Writing: Enables multiple researchers or authors to
work on the same document, track changes, and maintain a clear version history.

Content Management: Applied to track and manage changes to text-based content, such
as articles, blog posts, and documentation.

4.Benefits of Version control

Version control systems offer several benefits to developers and teams:

4.1 Collaboration: Version control enables seamless collaboration, allowing multiple people
to work on the same project simultaneously.

4.2 Change Tracking: It tracks changes made to files, providing a complete history of
modifications and facilitating code review.

4.3 Reproducibility: Developers can easily recreate previous code versions for debugging
and troubleshooting purposes.

4.4 Branching and Merging: Version control supports branching, allowing the creation of
separate lines of development that can later be merged.

4.5 Backup and Recovery: It serves as a reliable backup mechanism, reducing the risk of
data loss and aiding in disaster recovery.

4.6 Code Reviews: Version control facilitates code review processes, improving code quality
and maintaining standards.

4.7 Traceability and Accountability: Detailed logs of changes promote accountability and
traceability within the development process.

4.8 Synchronization and Deployment: Version control helps manage different
environments and enables efficient code synchronization and deployment.

4.9 Parallel Development: It supports parallel development by allowing multiple
developers to work on different features simultaneously.

4.10 Open Source Collaboration: Version control is crucial for open-source projects,
fostering collaboration among geographically dispersed developers.

5. Definition of terminal

In computing, a terminal refers to a program or a hardware device that allows users to
interact with a computer system, typically through a command-line interface (CLI). The
terminal provides a text-based interface where users can input commands and receive
textual output from the computer.

12|Version control — Trainee Manual

In the context of version control, a terminal (also known as a command line interface or
CLl) is a text-based interface used to interact with version control systems through
commands. It allows users to perform version control operations, such as managing
repositories, tracking changes, and collaborating with others, directly through typed
commands rather than graphical interfaces.

5.1 Most popularly terminals
Here are some of the most popular terminals used across various operating systems:
1. Git Bash (Windows)

e Overview: Git Bash is an application for Windows that provides a Bash emulation
environment. It comes bundled with Git for Windows and allows you to use Unix-
style commands on Windows.

o Importance: Git Bash is important because it provides a familiar Bash-like
environment on Windows, allowing users to run Git commands and use Unix-like
tools, which is helpful for consistency across different operating systems.

e Features: Includes Git command-line tools, Unix commands, and Bash scripting
capabilities.

2. Terminal (macOS)

e Overview: The built-in terminal application on macOS that supports Unix-based
commands.

The Terminal app on macOS is a command-line interface that supports Unix-based
commands, including Git commands.

e Importance: On macOS, the Terminal provides a native environment for running Git
commands and managing repositories. It’s essential for macOS users who need to
interact with Git and perform version control tasks directly from their system.

o Features: Provides a native command-line interface for running Git commands, shell
scripting, and interacting with the macOS system.

3. Command Prompt (Windows)

e Overview: The default command-line interface on Windows, also known as
cmd.exe.

The Command Prompt (cmd.exe) is the default command-line interface on
Windows. Git can be used within this environment if Git is installed and properly
configured.

¢ Importance: While less powerful than Git Bash for Unix-like commands, the
Command Prompt can still be used to run Git commands. It is important for users
who prefer or require the native Windows command-line environment.

e Features: Supports basic command-line operations and can be used with Git if
properly configured.

4. PowerShell (Windows)

13| Version control — Trainee Manual

e Overview: A more advanced command-line shell and scripting language for
Windows. It can be used to run Git commands if Git is installed and configured.

¢ Importance: PowerShell provides more advanced scripting capabilities compared to
the Command Prompt and can be used to automate Git-related tasks. It's important
for users who need more powerful scripting features.

o Features: Provides extensive scripting capabilities, access to .NET framework, and
integration with Windows management tasks.

several terminal environments can be used depending on your operating system and
personal preference. Each of these terminals allows you to run Git commands and interact
with Git repositories.

Why the Terminal is Important for Git:

o Direct Access: The terminal provides direct access to Git commands and
functionalities without the need for a graphical interface.

o Efficiency: Commands can be executed quickly and efficiently, especially when
dealing with large repositories or complex workflows.

e Advanced Features: The terminal allows users to access advanced Git features and
configurations that may not be available in graphical user interfaces.

e Scripting and Automation: The terminal supports scripting and automation, making
repetitive tasks and batch operations more manageable.

o Flexibility: Different terminals provide flexibility depending on the operating system
and user preference, ensuring that users can work effectively in their preferred
environment.

The terminal is a crucial tool for interacting with Git, offering power, flexibility, and
efficiency for version control tasks. The choice of terminal depends on the operating system
and the specific needs of the user.

6.Commands used in CMD

e md or Mkdir command: it is used to Create a project directory.it is command which
are enabled by default, allow you to use a single mkdir command to create
intermediate directories in a specified path.

e dir command: it is used to List out directory contents, to display all files and
directories, including hidden ones, in wide format The "dir" command is useful for
quickly viewing the contents of a directory and getting information about files and
directories within it

¢ c¢d command: it is used Changing the working directory. It allows you to navigate
through the file system and switch to a different directory. The "c¢d" command is
essential for navigating the file system in Command Prompt and allows you to
change directories to access different files and directories.

14| Version control — Trainee Manual

e cd.. Command: it is used Moving up to the parent directory. it as a shorthand way
of using the "cd" command to move up one level. The "cd.." command is useful for
quickly moving up to the parent directory without having to specify the full path.

¢ rd or rmdir Command: it is used Deleting a directory, the "rd" or "rmdir" command
in Command Prompt (cmd) that are used to remove (delete) an empty directory.
Both "rd" and "rmdir" are aliases of the same command and can be used
interchangeably. But remember to use the appropriate directory name when
executing the command.

o del Command: it is used Deleting a file, this command will delete all files with the
".txt" extension in the current directory. The "del" command permanently deletes
files, and they cannot be recovered from the Recycle Bin. Remember to use the
appropriate file name(s) or wildcard pattern when executing the command.

¢ copy Command: it is used Copying a file, this command used to copy one or more
files from one location to another, but If the destination path is not specified, the
file(s) will be copied to the current directory.so that is why is very important to
Remember to use the appropriate file name(s) and destination path when executing
the command.

¢ move Command: it is used to move a file, the "move" command in Command
Prompt (cmd) is used to move one or more files or directories from one location to
another. Remember to use the appropriate file name(s) or directory name(s) and
destination path when executing the command.

¢ ren Command: it is used Renaming a file, the "ren" command in Command Prompt
(cmd) is used to rename files or directories. Use the "ren" command followed by the
current name of the file or directory and the new name you want to assign. For
example: ren current_name new_name: This command will rename the file or
directory with the specified "current_name" to the "new_name. If the file or
directory you want to rename has spaces in its name, enclose the names in double
guotation marks.

¢ type Command: it is used to View file content, the "type" command in Command
Prompt (cmd) is used to display the contents of a text file directly. Use the "type"
command followed by the name of the text file you want to display its contents. The
"type" command is typically used for text files. It may not display the contents of
binary files correctly. Remember to use the appropriate file name when executing
the command. The "type" command is useful for quickly viewing the contents of a
text file without opening it in a separate program.

e cls Command: it is used to clear the CMD terminal. The "cls" command in Command
Prompt (cmd) is used to clear the contents of the command prompt window,
providing a clean slate. to clear the contents of the command prompt window,
simply type "cls" and press Enter. After executing the command, the command
prompt window will be cleared, and you will see a fresh, empty command prompt.so

15|Version control — Trainee Manual

The "cls" command is useful for clearing the screen and removing the clutter of
previous commands and outputs, providing a clean workspace.

¢ echo command: it is used to display a message, the "echo" command is useful for
displaying messages, checking the value of environment variables, and controlling
the echoing of command lines. The echo command can be used to display a
message, variable value, or system information on the console. The command can
be followed by a message or text string enclosed in double quotes. For example,
echo “Hello, World!” will display the message “Hello, World!” on the console.

o exit Command: it is used Exiting the CMD terminal, the "exit" command in
Command Prompt (cmd) is used to close the command prompt window. The "exit"
command is useful for quickly closing the command prompt window when you're
done with your tasks.

Figure 1

&
\l Practical Activity 1.1.2: Using CMD commands

= ,ﬂ'br
Things to Do
: w Task:

—

1: Referring to the previous theoretical activities (1.1.1) you are requested to go to the
computer lab to use cmd commands to create a directory, change directory, rename
directory, delete directory etc.... This task should be done individually.

2: Launch CMD

3: Referring to the steps provided in key readings 1.1.2, use CMD commands to create a
directory, change directory, Rename directory, delete directory etc.... .

4: Present your work to the trainer and whole class

A
&' Key readings 1.1.2: Applying CMD commands
1. Use of CMD Commands
1.1. Launch CMD
There are several ways to open the Command Prompt:
® Press Windows Key + R, type "cmd" or "cmd.exe" in the Run dialog, and press Enter.
® Press Windows Key, type "Command Prompt" in the search bar, and click on the
Command Prompt app.
® Press Windows Key + X, then select "Command Prompt" or "Command Prompt
(Admin)" from the Power User menu.
1.2. Understanding the command prompt:

16 |Version control — Trainee Manual

The command prompt displays a current directory, wusually starting with
C:\Users\YourUsername. This is the location where commands will be executed.
You can type commands directly after the command prompt and press Enter to execute
them.
Directory management using CMD commands
1. md or mkdir: Make Directory. This command creates a new directory.
e Example: md MyFolder or mkdir MyFolder (Creates a new folder named
"MyFolder" in the current directory)
2. dir: Directory Listing. This command lists the files and folders in the current
directory.
e Example: dir (Lists the files and folders in the current directory)
3. cd: Change Directory. This command is used to navigate between directories.
e Example: cd C:\Users (Moves to the "Users" directory on the C drive)
4. Cd..: Change to Parent Directory. This command moves up one level in the directory
structure.
e Example: cd.. (Moves to the parent directory of the current directory)
5. rd or rmdir: Remove Directory. This command deletes a directory.
e Example: rd MyFolder or rmdir MyFolder (Deletes the folder named
"MyFolder" in the current directory)
6. del: Delete. This command deletes a file.
e Example: del myfile.txt (Deletes the file "myfile.txt" in the current directory)
7. copy: Copy. This command copies files from one location to another.
e Example: copy C:\Folderl\file.txt D:\Folder2\ (Copies "file.txt" from
"Folderl" to "Folder" on different drives)
8. move: Move. This command moves files or directories to a different location.
e Example: move C:\Folderl\file.txt C:\Folder2\ (Moves "file.txt" from
"Folder1" to "Folder2" on the same drive)
9. ren: Rename. This command renames a file or directory.
e Example: ren myfile.txt newfile.txt (Renames the file "myfile.txt" to
"newfile.txt")
10.type: Display File Content. This command displays the contents of a text file.
e Example: type myfile.txt (Displays the contents of the file "myfile.txt")
11.cls: Clear Screen. This command clears the CMD window.
e Example: cls (Clears the CMD window)
12.echo: Display Text. This command displays text on the CMD window or writes it to
a file.
e Example: echo Hello, World! (Displays "Hello, World!" on the CMD window)
13. exit: Exit CMD. This command exits the CMD prompt and closes the CMD window.
e Example: exit (Exits the CMD prompt)

17| Version control — Trainee Manual

These commands are commonly used for various operations in CMD, including directory
management, file manipulation, and navigation.
1.3. Steps used to perform CMD Commands related to directory management
v" md or Mkdir command:
1.0pen the Command Prompt
2.Navigate to the Directory
3.Create the Directory
To perform the dir command, follow these steps:
Open the command prompt by pressing the Windows key and typing "cmd" or "command
prompt" in the search bar. Then click on "Command Prompt" or press Enter.
Once the command prompt is open, type "dir" and press Enter.
v" ¢d Command
1.0pen Command Prompt
2.Navigate to a Directory

e Change to a Specific Directory

e Change to a Different Drive

e Change to Parent Directory

e Change to User's Home Directory

e List Available Drives

3.Press Enter
4 Verify the Change
-> Cd.. command
To implement the cd.. command and navigate up one level in the directory hierarchy, follow
these steps:

1) Open the command prompt by pressing the Windows key and typing "cmd" or
"command prompt" in the search bar. Then click on "Command Prompt" or press
Enter.

2) Once the command prompt is open, type cd followed by the path of the directory
you want to navigate to. For example, if you want to navigate to a directory named
"Folderl" located in your user directory, you would enter: «cd
C:\Users\Username\Folderl and press Enter.

3) Onceyou are in the desired directory, you can use the cd.. command to navigate up
one level at a time. Simply type cd.. and press Enter. This will move you to the parent
directory of the current directory.

4) You can use cd.. multiple times to navigate up multiple levels.

=> Rd or rmdir command

Steps to implement the rd or rmdir command:

1. Open the command prompt by pressing the Windows key and typing "cmd" or
"command prompt" in the search bar. Then click on "Command Prompt" or press
Enter.

18| Version control — Trainee Manual

2. Once the command prompt is open, navigate to the directory containing the
directory you want to delete using the cd command. For example, if you want to
delete a directory named "Folderl" located on vyour desktop, enter cd
C:\Users\YourUserName\Desktop and press Enter. This will take you to your
desktop directory.

3. To delete the directory "Folderl", enter rd /s Folderl or rmdir /s Folderl and press
Enter. The /s option is used to delete the directory and all its subdirectories
recursively without prompting for confirmation. If there are any files or
subdirectories in the directory, you will be prompted to confirm the deletion. Type
Y and press Enter to confirm.

=> Del command:

Open the Command Prompt:

N

Navigate to the directory containing the file(s) you want to delete:

Replace "C:\path\to\directory" with the actual path to the directory containing the
file(s) you want to delete.

3. Use the "del" command followed by the file name(s) or wildcard pattern to delete
the file(s).

Copy command

Open the Command Prompt: Press the Windows key, type "cmd," and press Enter.
Navigate to the directory where the source file is located

woN ey

Use the "copy" command followed by the source file name and the destination
directory to copy the file

Move command:

Open the Command Prompt: Press the Windows key, type "cmd," and press Enter.
Navigate to the directory where the source file or directory is located

woN ey

3.Use the "move" command followed by the source file or directory name and the
destination directory to move the file or directory

\

Ren command
Open the Command Prompt

N

Navigate to the directory where the file or directory you want to rename is located:
Use the "cd" command to navigate to the appropriate directory if needed

3. Use the "ren" command followed by the current name of the file or directory and
the new name you want to assign.

Type command

Open the Command Prompt

Navigate to the directory where the text file is located

Use the "type" command followed by the name of the text file you want to display.
Cls command

Open the Command Prompt

NoE g WwN ey

To clear the command window, simply type "cls" and press Enter.

19| Version control — Trainee Manual

Echo command:

1. Open the Command Prompt: Press the Windows key, type "cmd," and press Enter.

2. To display text in the command window, simply type "echo" followed by the text
you want to display

3. to enable or disable the display of commands, you can use the "echo" command
with the "on" or "off" parameter.

=> Exit command

In Windows, the exit command is used to close the command prompt window or

terminate a batch file.

To implement the exit command:

1. Open the command prompt by pressing the Windows key and typing "cmd" or
"command prompt" in the search bar. Then click on "Command Prompt" or
press Enter.

Once the command prompt is open, enter any commands you want to execute.

3. When you're ready to exit the command prompt, simply type exit and press
Enter. This will close the command prompt window.

g
Points to Remember

e There are primarily three types of version control systems: Local Version Control

Systems, Centralized Version Control Systems, and Distributed Version Control
Systems.

e There are most popular terminals commonly used with popular version control
systems include: command prompt (CMD), PowerShell, Bash

e To use the CMD (Command Prompt) terminal effectively in Windows, follow these
basic steps:
1. Open CMD
2. Understanding the commands

@Eﬂ

You are a system administrator responsible for managing directories on a network server. You

Application of learning 1.1.

requested to use the Command Prompt (CMD) to perform creation of directories, changing
directories, renaming directories, delete directories for efficient and precise management of
the network server's file system, ensuring optimal organization and accessibility.

20| Version control — Trainee Manual

— & B e SN S—
' Indicative content 1.2: Description of Git

\/ Duration: 9hrs

2 Theoretical Activity 1.2.1: introduction of Git
28

Things 109
g Tasks:

_—

1. In small groups, you are requested to answer the following questions related to the Git:
i. What do you understand about git?
ii. Provide a description of:
e Features of git
e Git basic concepts
e Git architecture and git workflow.
2. Participate in group formulation
3. Present your findings to your classmates and trainer
4. For more clarification, read the key readings 1.2.1. In addition, ask questions where
necessary.

@
6"
Key readings 1.2.1: Description of Git

1. Definition of Git
Git stands for "Global Information Tracker". It's a free, open-source version control system
that helps developers track and manage changes to source code. However, the name is
derived from the system’s ability to track changes to files, not just locally but globally, across
a network. GIT works by keeping a record of all the changes made to a project and it allows
multiple developers to work on the same project at the same time without interfering with
one another. This allows for easy collaboration, especially for large, complex projects.

Git is a distributed version control system (VCS) that is widely used in software
development. It allows multiple developers to work on a project simultaneously, keeping
track of changes made to the codebase and facilitating collaboration.
2. Features of Git
Git is a distributed version control system that is widely used for tracking changes in source
code during software development. Here are some key features of GIT:
1. Distributed Version Control: GIT is a distributed version control system, meaning
that each developer has a complete copy of the entire project history on their local
machine. This allows for decentralized collaboration and offline work.

21| Version control — Trainee Manual

User 1 User 2

w{?:l < > H.,Q.T.l
Subteam Fetches
+L..\ L

A A
\ Origin
Subteam
Subteam
">
Fetches Fetches
5 / %
Y Y
User 3 User 4

rrerdomrort .
]/ L

Figure 5: Distribution of Version Control to the users

2. Branching and Merging: GIT makes branching easy and encourages a branch-per-
feature workflow. Developers can create branches to work on specific features or
fixes, and later merge those branches back into the main codebase.

3. Fast and Lightweight: GIT is designed to be fast and efficient. It is a lightweight
system that doesn’t require constant communication with a central server. Most
operations are performed locally, making GIT quick and responsive.

4. Data Integrity: GIT uses a secure hashing algorithm (SHA-1) to ensure the integrity
of the versioned data. Each commit is checked, and the commit history is secured
against corruption.

5. Staging Area (Index): GIT has a staging area, also known as the index, where
changes can be selectively included before committing them. This allows developers
to control which changes are included in the next commit.

6. History Tracking: GIT maintains a detailed history of changes to the codebase.
Developers can view the history, see who made specific changes, and understand
how the project has evolved.

22| Version control — Trainee Manual

7. Parallel Development: Multiple developers can work on different features
simultaneously, and GIT can intelligently merge their changes. This parallel
development is facilitated by GIT’s branching and merging capabilities.

8. Open Source: GIT is an open-source project, and its source code is freely available.
This openness has led to a large and active community, contributing to its
widespread adoption.

9. Compatibility: GIT is platform-independent and works on various operating
systems, including Linux, macQOS, and Windows. This makes it easy for teams with
diverse environments to collaborate.

10. Support for Non-linear Development: GIT supports non-linear development
workflows, allowing for complex project structures with features like topic
branches, release branches, and more.

11. Easy Collaboration: GIT facilitates collaboration among developers. Repositories
can be hosted on platforms like GitHub, GitLab, or Bitbucket, enabling easy sharing,
collaboration, and contribution from developers around the world.

12. Integration with Other Tools: GIT can be easily integrated with various
development tools and services. Continuous Integration (ClI) platforms, issue-
tracking systems, and code review tools often have built-in support for GIT.

Understanding and effectively using GIT is a valuable skill for software developers, as it
provides a powerful and flexible version control system for managing codebases of all sizes
and complexities.

3. Git Basic concepts

3.1. Repository

In Git, the repository is like a data structure used by VCS to store metadata for a set of files
and directories. It contains the collection of the files as well as the history of changes made
to those files. Repository in Git is considered as your project folder. A repository has all the
project-related data. Distinct projects have distinct repositories.

They are two types of git repositories:

Local Repository: it is a folder in your machine (laptop or computer) where your code is
stored. A local source code or project store, means that only you have access to the code
and if your computer crashes or you lose that code, then it would be pretty hard to get it
back.

Remote repository: it is a folder hosted on a website, like GitHub, for example, and your
code there is accessible to not just you, but your whole team! If you lose your code on your
computer, your code is still safe here! This is akin to iCloud storage.

3.2. Commit
It is used to record the changes in the repository. It is the next command after the git add.
Every commit contains the index data and the commit message. Every commit forms a

23| Version control — Trainee Manual

https://www.javatpoint.com/git-add

parent-child relationship. When we add a file in Git, it will take place in the staging area. A
commit command is used to fetch updates from the staging area to the repository.

The staging and committing are co-related to each other. Staging allows us to continue
making changes to the repository, and when we want to share these changes to the version
control system, committing allows us to record these changes.

Commits are the snapshots of the project. Every commit is recorded in the master branch
of the repository. We can recall the commits or revert it to the older version. Two different
commits will never be overwritten because each commit has its own commit-id. This
commit-id is a cryptographic number created by SHA (Secure Hash Algorithm) algorithm.

3.3. Branch

A branch is a version of the repository that diverges from the main working project. It is a
feature available in most modern version control systems. A Git project can have more than
one branch. These branches are a pointer to a snapshot of your changes. When you want
to add a new feature or fix a bug, you spawn a new branch to summarize your changes. So,
it is complex to merge the unstable code with the main code base and also facilitates you
to clean up your future history before merging with the main branch.

Branch 1
/1 Master
» » —_— e
Branch 2

Figure 6: Branches

Git Master Branch

The master branch is a default branch in Git. It is instantiated when the first commit is made
on the project. When you make the first commit, you're given a master branch to the
starting commit point. When you start making a commit, then the master branch pointer
automatically moves forward. A repository can have only one master branch.

Master branch is the branch in which all the changes eventually get merged back. It can be
called as an official working version of your project.

24| Version control — Trainee Manual

3.4. Merge

Merge is the process of combining changes from one branch into another. It takes the
changes made in one branch and integrates them into another branch. This is often used to
incorporate feature branches back into the main branch.

In Git, the merging is a procedure to connect the forked history. It joins two or more
development history together. The git merge command facilitates you to take the data
created by git branch and integrate them into a single branch. Git merge will associate a
series of commits into one unified history. Generally, git merge is used to combine two
branches.

Feature

e

erge

Master

Figure 7: Merging branches

It is used to maintain distinct lines of development; at some stage, you want to merge the
changes in one branch. It is essential to understand how merging works in Git.

In the above figure, there are two branches master and feature. We can see that we made
some commits in both functionality and master branch, and merge them. It works as a
pointer. It will find a common base commit between branches. Once Git finds a shared base
commit, it will create a new "merge commit." It combines the changes of each queued
merge commit sequence.

3.5. Pull

The term pull is used to receive data from GitHub. It fetches and merges changes from the
remote server to your working directory. The Git pull command is used to pull a repository.
Pulling is the process of fetching the latest changes from a remote repository and merging
them into your local branch. It combines the fetch (retrieving changes) and merge
(incorporating changes) steps.

3.6. Push
Pushing is the process of sending your local commits to a remote repository. It updates the
remote repository with your changes, making them available to other developers.

25| Version control — Trainee Manual

The push term refers to upload local repository content to a remote repository. Pushing is
an act of transfer commits from your local repository to a remote repository. Pushing is
capable of overwriting changes.

4. Git architecture

GIT ARCHITECTURE

Staging Remote
area repo

Figure 8: Git Architecture

1. Working Directory: The working directory is the directory on a developer's machine
where the files of the project are stored. Developers modify files in the working
directory as they work on the project.

2. Index (Staging Area): The staging area, also known as the index, is an intermediate
area where changes to files are prepared before they are committed to the
repository. Developers can selectively choose which changes to include in the next
commit by staging them.

3. Local Repository: The local repository contains a complete copy of the project's
repository, including all files, directories, commit history, branches, and tags. It enables
developers to access the project and its history offline.

4. Remote Repository: A remote is a version of the repository that is hosted on a different
machine or server. It allows multiple developers to collaborate by pushing and pulling
changes to and from a shared remote repository.

5. Git workflow

Git workflow refers to the specific set of practices and processes that are followed when
using Git, a distributed version control system. It encompasses the way developers
collaborate, manage and track changes to their codebase, and coordinate their work
effectively.

26 |Version control — Trainee Manual

1.Branch: Create a new branch to work on a specific task or feature. This allows you to
isolate your changes from the main branch.

2. Edit: Make changes to files in your working directory.

3. Stage: Selectively choose the modified files you want to include in the next commit and
add them to the staging area.

4. Commit: Create a new commit to record the changes in the repository. Provide a
meaningful commit message that describes the changes made.

5. Push: Upload or send your local commits to the remote repository, making them
available to others.

6. Merge: If you are working on a branch, you can merge your changes back into the main
branch once they are tested and ready.

7. Pull: Regularly download changes from the remote repository to stay up to date with the
latest changes made by other team members.

Local Remote

working staging
mm

Figure 9: Git workflow simplified

6. Commands used in git configuration
6.1 The Git config commands
Git supports a command called git config that lets you get and set configuration variables
that control all facets of how Git looks and operates. It is used to set Git configuration values
on a global or local project level.
6.2 Git version command
In version control, "Git version" refers to the specific version or release of the Git software
that is being used. Git is a distributed version control system that allows developers to track
changes, collaborate on projects, and maintain a history of their code. Git follows a
versioning system, where each release or version of Git has a specific number associated
with it. The version number usually consists of three parts: simply we run git version for
checking current version git we are already running in our computers

27| Version control — Trainee Manual

6.3 Git init command

It is a command used to create a new repository: Running "git init" in a directory initializes
a new Git repository in that location. Git creates a hidden “. git" folder, which contains all
the necessary files and subdirectories to manage version control. To create a new
repository, you'll use the git init command, also git init is a one-time command you use
during the initial setup of a new repository

6.4 Git ignore command

The gitignore file is a configuration file used in version control systems, specifically Git, to
specify files, directories, or patterns that should be ignored and not tracked by Git. When
you add files or directories to the .git ignore file, Git will exclude them from version control,
meaning they will not be staged, committed, or pushed to the repository.

&
sl Practical Activity 1.2.2: Installing git set up

,_ﬂn-
Things 1o lo
: ' w Task:

1: Referring to the previous theoretical activities (1.2.1) you are requested to go to the
computer lab to install and configure git set up. This task should be done individually.

3: Present out the steps to install git set up.

4: Referring to the steps provided on task 3, install git set up.

5: Present your work to the trainer and whole class

6: Read key reading 1.2.2 and ask clarification where necessary

7: Perform the task provided in application of learning 1.2.

Key readings 1.2.2: Preparing Git environment

1. Steps to Install Git for Windows
1.1 Download Git for Windows

1. Browse to the official Git website: https://git-scm.com/downloads
2. Click the download link for Windows and allow the download to complete.

28| Version control — Trainee Manual

g Downloads

rd
@ Mac0sX | &¥ Windows

fes (2010-11-04)

{ Linux/Unix Download 2.24.0 for Windows

Older releases are available and the Git source
repository is on GitHub.

it book

thacon and

lable to read

bad iree

able on GUI Clients Logos
Git comes with built-in GUI tools (git-gui, Various Git logos in PNG (bitmap) and EPS
gitk), but there are several third-party tools for (vector) formats are available for use in
users looking for a platform-specific online and print projects.
experience.

View Logos —
View GUI Clients —

1.2 Extract and Launch Git Installer

3. Browse to the download location (or use the download shortcut in your browser).
Double-click the file to extract and launch the installer.

‘ | = Manage Downloads

Home Share View Picture Tools

1 * » ThisPC » Windows (C:) » Users » vladimirk » Downloads

Bl Desktop Fa
; Downloads o
. Documents o

[&=] Pictures +
Building Optimi; Git-2.24.0.2-64-bi
Docker Books t

4. Allow the app to make changes to your device by clicking Yes on the User Account Control
dialog that opens.

29| Version control — Trainee Manual

[L AN PR, PRp: [N S T
User Account Control K

sion of Git for Windows.
Do you want to allow this app to make ased about 1 month ago,
changes to your device?

download manually.

bit book Git for Windows
Chacon and

ilable to read
ead tree Verified publisher: Johannes Schindelin
able on File origin: Hard drive on this computer

Show more details

Yes No

the source code

5. Review the GNU General Public License, and when you’re ready to install, click Next.

7

Git 2.24.0.2 Setup - X

Information
Please read the following important information before continuing.
1 of Git for Windows.

d about 1 month ago
When you are ready to continue with Setup, dick Next. ago,

- -)
GNU General Public License e
“ersion 2, June 1991
k
Cl (Copyright {C) 1989, 1991 Free Software Foundation, Inc.

an 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

o read E\nerg‘me is permitted to copy and distribute verbatim copies

o of this Ticense document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General P,

The crrrent sonrrs rode release i5 versinn 2 24 o Tf yon want the news

reason to change it, and click Next.

6. The installer will ask you for an installation location. Leave the default, unless you have

30| Version control — Trainee Manual

pownloading Uit

Git 2.24.0.2 Setup £ =
Select Destination Location
Where should Git be installed?
i of Git for Windows.
d about 1 month ago,
Setup will install Git into the following folder.
To continue, dick Mext, If you would like to select a different folder, dick Browse, wnload manua].ly.
Browse...
ook
ron and
le to read
tree
Bon

Atleast 254.4 ME of free disk space is required.

< Back Cancel

g current snuree code relesse is version oo Tt vonr want the newer version. von can hiild it
n 1 T A58 1 L] 1.0y ANT TN

7. A component selection screen will appear. Leave the defaults unless you have a specific
need to change them and click Next.

LJUWILUAUIILIE UIl
Git 2.24.0.2 Setup - s

Select Components

Which compeonents should be installed?
L of Git for Windows.
d about 1 month ago,

Select the components you want to install; dear the components you do not want to
install. Click Next when you are ready to continue.

|;| Additional icons Bl annsing
‘. [] on the Desktop -
Windows Explorer integration
book Git Bash Here
con and Git GUI Here
ple to read Git LFS {Large File Support)
I tree Assodiate .git* configuration files with the default text editor
e on Assodiate .sh files to be run with Bash
[J Use a TrueType font in all console windows
[chedk daily for Git for Windews updates

Current selection requires at least 254, 1 ME of disk space,

from the ennrre cods

8. The installer will offer to create a start menu folder. Simply click Next.

31| Version control — Trainee Manual

ids
Git 2.24.0.2 Setup — X
nts
Select Start Menu Folder
Where should Setup place the program's shortouts?

b of Git for Window
piIty : d about 1 month ag
d Setup will create the program's shartouts in the following Start Menu folder.

—i
To continue, dick Mext, If you would like to select a different folder, dick Browse. wnload ma.nua].ly.
|ﬂ Browse...

e Pro Git book

v Scott Chacon and
1b is available to read
r free. Dead tree

are available on

com.

[Ibon't create a Start Menu folder

< Back Cancel

—

9. Select a text editor you’d like to use with Git. Use the drop-down menu to select
Notepad++ (or whichever text editor you prefer) and click Next.

o
ds)
Git 2.24.0.2 Setup - X
s
Choosing the default editor used by Git
Which editor would you like Git to use?
1 of Git for Window
Hty d about 1 month ag
Use Notepad ++ as Git's default editor w
Motepad++
wnload manually.

ke Pro Git book

v Scott Chacon and

ih is available to read
free. Dead tree

hre available on

om.

< Back Cancel

10. The next step allows you to choose a different name for your initial branch. The default
is 'master.' Unless you're working in a team that requires a different name, leave the default
option and click Next.

32| Version control — Trainee Manual

19U VVIIIUC[L[IIIS IL

» Git 2.24.0.2 Setup = X

Adjusting the name of the initial branch in new repositories N/
What would you like Git to name the initial branch after "git init™ g
2 of Git for Windows.

d about 1 month ago,
(® Let Git decide
Let Git use its default branch name (currently: "master™) for the initial branch
in newly created repositories. The Git project intends to change this default to wnload manually.

a more indusive name in the near future,

l}f book d (O Override the default branch name for new repositories

acon an

flable to read NEW! Many teams already renamed their default branches; common choices are
d 3 z BECA "main”, “trunk” and "development”. Specify the name “git init” should use for the

pad tree initial branch:

lable on

main

This setting does not affect existing repositories.

< Back Cancel

he rirront canres rode relasce fevorcinn » o4 o T van want tha newar varcion wn

11. This installation step allows you to change the PATH environment. The PATH is the
default set of directories included when you run a command from the command line. Leave
this on the middle (recommended) selection and click Next.

EFLTFTY ll.l.\lu“l._l.j.b " L

Git 2.24.0.2 Setup - X

Adjusting your PATH environment
How would you like to use Git from the command line?
b of Git for Windows.

d about 1 month ago,
() Use Git from Git Bash only
This is the most cautious choice as your PATH will not be modified at all. You will
only be able to use the Git command line tools from Git Bash. wnload ma.nually.
k (® Git from the command line and also from 3rd-party software
hand {Recommended) This option adds only some minimal Git wrappers to your
to read PATH to avoid duttering your environment with optional Unix tools.
. You will be able to use Git from Git Bash, the Command Prompt and the Windows
e PowerShell as well as any third-party software looking for Gitin PATH.
n

(C) Use Git and optional Unix tools from the Command Prompt
Both Git and the optional Unix tools will be added to your PATH.

Warning: This will override Windows tools like *find™ and “sort”. Only
use this option if you understand the implications.
< Back Cancel

Tha rmrrent sonrre rode relaace 1o versinn @ 24 o T von want the news

Server Certificates, Line Endings and Terminal Emulators

12. The installer now asks which SSH client you want Git to use. Git already comes with its
own SSH client, so if you don't need a specific one, leave the default option and click Next.

33| Version control — Trainee Manual

1IJUVV lllUClLlLllS I

Git 2.24.0.2 Setup = X

Choosing the SSH executable
Which Secure Shell client program would you like Git to use?
t of Git for Windows.

d about 1 month ago,
(® Use bundled OpenSSH
This uses ssh.exe that comes with Git.
wnload manually.
(O Use external OpenSSH
it book NEW! This uses an external ssh.exe. Git will not install its own OpenSSH
hacon and (and related) binaries but use them as found on the PATH.
ilable to read
bad tree
able on

< Back Cancel

he riirrent canree rade relascs e verainn o 94 0 I van want tha nau

Note: Check out our comparison of SSH and HTTPS for Git and which one you should use.

13. The next option relates to server certificates. Most users should use the default. If you're
working in an Active Directory environment, you may need to switch to Windows Store
certificates. Click Next.

LIUVY lllUClLl1115 \TIL

Git 2.24.0.2 Setup — >

Choosing HTTPS transport backend
Which SSLTLS library would you like Git to use for HTTPS connections?
1 of Git for Windows.

d about 1 month ago,
(® Use the OpenssL library

Server certificates will be validated using the ca-bundle.crt file.
wnload manually.

() Use the native Windows Secure Channel library

itbook Server certificates will be validated using Windows Certificate Stores,

hacon and This option also allows you to use your company's internal Root CA certificates
1 distributed e.qg. via Active Directory Domain Services.

kad tree

able on

< Back Cancel

The rmrrent amirrs rods Felascs e varcinn & o4 o Tf von want the naw

14. The next selection converts line endings. It is recommended that you leave the default
selection. This relates to the way data is formatted and changing this option may cause
problems. Click Next.

34| Version control — Trainee Manual

https://phoenixnap.com/kb/git-ssh-vs-https

powinloading LIt

Git 2.24.0.2 Setup e *

Configuring the line ending conversions
How should Git treat line endings in text files?
1 of Git for Windows.

d about 1 month ago,

(® Checkout Windows-style, commit Unix-style line endings

Git will convert LF to CRLF when checking out text files, When committing
text files, CRLF will be converted to LF. For cross-platform projects, wnload manually.
this is the recommended setting on Windows {"core.autocrlf™ is set to "true”).

ook d (O) Checkout as-is, commit Unix-style line endings
0n an:
le to read Git will not perform any conversion when checking out text files. When
~ committing text files, CRLF will be converted to LF. For cross-platform projects,
tree this is the recommended setting on Unix ("core.autocrlf™ is set to “input™).
on

() Checkout as-is, commit as-is
Git will not perform any conversions when chedking out or committing

text files. Choosing this option is not recommended for cross-platform
projects (Tcore.autocrlf” is set to “false”).

< Back Cancel

The current source code release is version 2.24.0. If vou want the newer version, you

15. Choose the terminal emulator you want to use. The default MinTTY is recommended,
for its features. Click Next.

fentation Downloading Git

loads :
3 Git 2.24.0.2 Setup - %
llients
Configuring the terminal emulator to use with Git Bash
Which terminal emulator do you want to use with your Git Bash?
L of Git for Windqd
unity about 1 month
(® Use MinTTY (the default terminal of M5YS2)
Git Bash will use MinTTY as terminal emulator, which sports a resizable window,
non-rectangular selections and a Unicode font. Windows console programs (such mnload manuall
as interactive Python) must be launched via “winpty” to work in MinTTY,
ntire Pro Git book

(O use Windows' default console window
n by Seott Chacon and

kraub is available to read Git will use the default console window of Windows ("and.exe”), which works well

with Win32 console programs such as interactive Python or node.js, buthas a

for free. Dead tree very limited default scroll-badk, needs to be configured to use a Unicode font in
ns are available on order to display non-ASCII characters correctly, and prior to Windows 10 its
bI.COMmL. window was not freely resizable and it only allowed rectangular text selections.

< Back Cancel

The rurrent sonres code relaase 1S version 2 24 0 I von want the newsr varsion. v can i

16. The installer now asks what the git pull command should do. The default option is
recommended unless you specifically need to change its behavior. Click Next to continue
with the installation.

35|Version control — Trainee Manual

https://phoenixnap.com/glossary/terminal-emulation

170U WIIIU(IUIIIS I
 Git 2.24.0.2 Setup = X
Choose the default behavior of "git pull’ l
What should "git pull” do by default? /
2 of Git for Windows.
d about 1 month ago,
(® Default (fast-forward or merge)
This is the standard behavior of "git pull*: fast-forward the current branch to
the fetched branch when possible, otherwise create a merge commit. wnload manually.
it book ORebase
hacon and Rebase the current branch onto the fetched branch. If there are no local
ilable to read commits to rebase, this is equivalent to a fast-forward.
pad tree
Gbloon () Only ever fast-forward
Fast-forward to the fetched branch. Fail if that is not possible.
P e
The rrront cnnres rnds relascs fevarainn & o4 i T vnn weant tha nawar varcion von con e

17. Next you should choose which credential helper to use. Git uses credential helpers to
fetch or save credentials. Leave the default option as it is the most stable one, and

click Next.
1 JUVY uluaulus JIL
" Git 2.24.0.2 Setup = X
Choose a credential helper ¢ ¥
Which credential helper should be configured? A\
2 of Git for Windows.
d about 1 month ago,
(® Git Credential Manager Core
(NEW!) Use the new, cross-platform version of the Git Credential Manager.
See more information about the future of Git Credential Manager here. jwnload manually.
st book (O Git Credential Manager
hacon and (DEPRECATED) The Git Credential Manager for Windows handles credentials e.q.
flable to read for Azure DevOps and GitHub (requires .NET framework v4.5.1 or later).
pad tree
lable on O None
Do not use a credential helper.
< Back Cancel
The rrrront conres rnde relazce fe vorcinn » o4 n TF v want tha nawer varcion wvon con by

Additional Customization Options

18. The default options are recommended; however this step allows you to decide which
extra option you would like to enable. If you use symbolic links, which are like shortcuts for
the command line, tick the box. Click Next.

36| Version control — Trainee Manual

10U VVIIIUC[L[IIIS I
% Git 2.24.0.2 Setup = X
Configuring extra options \
Which features would you like to enable? g
t of Git for Windows.
d about 1 month ago,
Enable file system caching
File system data will be read in bulk and cached in memory for certain
operations ("core.fscache” is set to “true”). This provides a significant wnload manually.
performance boost.
it book [] Enable symbolic links
hacon and
ilable to read Enable symbolic links (requires the SeCreateSymbolicLink permission).
Lad :t"z;e 2 Please note that existing repositories are unaffected by this setting.
lable on
< Back Cancel
The mirrent ennres rnde ralascs fe vorainn » 94 0 Tf v want tha nawsr varcion n

19. Depending on the version of Git you’re installing, it may offer to install experimental
features. At the time this article was written, the options to include support for pseudo
controls and a built-in file system monitor were offered. Unless you are feeling
adventurous, leave them unchecked and click Install.

1IJUYVY lllUClLLlllS IL0

 Git 2.24.0.2 Setup = X

Configuring experimental options
These features are developed actively. Would you like to try them?

t of Git for Windows.
d about 1 month ago,
[[] Enable experimental support for pseudo ¢ |
(NEW?) This allows running native console programs like Node or Pythonin a
Git Bash window without using winpty, but it still has known bugs. wnload manually.

Lt book [[] Enable experimental built-in file system monitor

hacon and (NEW!) Automatically run a built-n file system watcher, to speed up common
flable to read operations such as "gitstatus”, "gitadd”, "git commit’, etcin worktrees
bad ;E“x;e 2 containing many files.

lable on

< Back Cancel

ho rirront eanres rado valazcs fe vorcinn o 24 n Tf van want tha newar varcion v

Complete Git Installation Process

20. Once the installation is complete, tick the boxes to view the Release Notes or Launch
Git Bash, then click Finish.

37| Version control — Trainee Manual

W AWA LY I.IJ.UCU.JJJJS TIL

Git 2.24.0.2 Setup —

Completing the Git Setup Wizard
1 of Git for Windows.

Setup has finished installing Git on your computer. The
d about 1 month ago,

application may be launched by selecting the installed
shortcuts,

Click Finish to exit Setup.
wnload manually.

[Launch Git Bash
tbook View Release Motes
hacon and
lable to read
ad tree

ble on

il

Note: Learn the differences between CLI and GUI.
1.3 How to Launch Git in Windows

Git has two modes of use — a bash scripting shell (or command line) and a graphical user
interface (GUI).

a) Launch Git Bash Shell

To launch Git Bash open the Windows Start menu, type git bash and press Enter (or click

the application icon).

38| Version control — Trainee Manual

https://phoenixnap.com/kb/cli-vs-gui

All Apps Documents Settings Web More ¥ Feedback

Best match i
Git Bash I
App
Search the web i
Git Bash
L Git bash - See web results > App
]
= Open
L3 Run as administrator [
! Open file location I
= Pin to Start [
< Pin to taskbar
i
[l uninstall
£ Git bash|

b) Launch Git GUI

To launch Git GUI open the Windows Start menu, type git gui and press Enter (or click the
application icon).

About
5 :]
Repository Help Wnloadlng
| Create New Repository

Clone Existing Repository Your dO“'Il].Oi

Open Existing Repository |
You are download|

This is the most re
on 2019-11-06.

If your downloa

Quit Other Git for
S —

Bon Stranb ie avmilahls o wasd Git for “r-mdo‘\‘s

39| Version control — Trainee Manual

Steps to perform git configuration:

Performing Git configuration involves setting up your identity (name and email), choosing
a text editor, and configuring other settings. Here are the steps to perform Git
configuration:

1. verify that Git is installed

After the installation is complete, Sarah opens a new terminal or command prompt to verify

that Git is installed. She runs the following command:

git --version

2. Set Your Name and Email:

Use the git config command to set your name and email. This information will be associated
with your commits.

git config --global user.name

git config --global user.email

Replace "Your Name" with your actual name and "your.email@example.com" with your
actual email address.

3. Configure Your Preferred Text Editor:

Set your preferred text editor for Git commit messages. This is the editor that will open
when you make a commit.

For example, if you want to use Visual Studio Code:

git config --global core.editor

Replace "code" with the command for your preferred text editor.
4. Check Your Configuration:

To view your Git configuration, use the following command:

git config --list

40| Version control — Trainee Manual

5. Configure Default Branch Name (Optional):

If you want to use a branch name other than "master" or "main" as the default branch name

for new repositories, you can configure it:

git config --global init.defaultBranch main

Replace "main" with your preferred default branch name.
6. Set Up a Global .gitignore (Optional):

If you want to use a global .gitignore file across multiple repositories, you can create a
global .gitignore file and tell Git to use it:

touch ~f.gitignore_global

nano ~/.gitignore_global

git config --global core.excludesfile ~/._gitignore_global

7. Verify the installation:
Check Which Version of Git You’re Using

The command to check which version of Git you’re using is the same on both Windows and
Mac. To check your Git version, open Command Prompt (Windows), Terminal (Mac), or the
Linux terminal. Once open, run this command:

git --version

Command Prompt

Microsoft Windows [Version 1©.6.19843.1237]
(c) Microsoft Corporation. All rights reserved.

C:\Usersi\marsh --version

The Git version you’re currently using will be returned.

41 |Version control — Trainee Manual

https://www.howtogeek.com/235101/10-ways-to-open-the-command-prompt-in-windows-10/
https://www.howtogeek.com/682770/how-to-open-the-terminal-on-a-mac/
https://www.howtogeek.com/686955/how-to-launch-a-terminal-window-on-ubuntu-linux/
https://www.howtogeek.com/686955/how-to-launch-a-terminal-window-on-ubuntu-linux/

Command Prempt

Hicr

--version

B.windows.2

Now that you know which version of Git you’re using, you can decide if you want to update
it or not.

How to Update Git on Windows

The command you use to update Git on Windows depends on which version of Git you're
currently using. If you’re using any version from 2.14.2 to 2.16.1, then run this command in
Command Prompt:

git update
If you’re using any version after 2.16.1, then you’ll need to run this command instead:
git update-git-for-windows

Regardless of which command you need to use, your Git version will update or you’ll get a
message saying you’re up to date if you're already using the latest version.

] Command Prompt

C:\Users\marsh:gi date-gi r-windows
Git for Windows . 2 (b64-bit)

] p to d

If you’re using a version older than 2.14.2, then you’ll need to get the latest installer from
the download portal and update your Git version the same way as when you installed Git
for the first time.

Apply Git configuration

The git config command is used to set or get configuration variables in Git. These variables
can control various aspects of Git's behavior, such as user information, default behavior,
and repository settings.

Here are some practical Git configurations with examples:

42 |Version control — Trainee Manual

https://git-scm.com/download

1. Set your name and email:
git config --global user.name "Your Name"
git config --global user.email "your@email.com"

This configuration sets your name and email globally, which will be used for all your Git
commits.

2. Configure your preferred text editor:
git config --global core.editor "vim"

This configuration sets Vim as the default text editor for Git. You can replace "vim" with the
name of your preferred editor.

3. Set default branch name:

git config --global init.defaultBranch "main"

This configuration sets the default branch name to "main" when creating a new repository.
4. Enable colored output:

git config --global color.ui true

This configuration enables colored output in Git's command-line interface, making it easier
to read and interpret.

5. Exclude certain files from being tracked:
git config --global core.excludesfile ~/.gitignore_global

This configuration specifies a global gitignore file that contains patterns for files and
directories you want Git to ignore by default.

These are just a few examples of practical Git configurations. You can explore more
configuration options and customize Git based on your specific needs.

6. Git Init command

In order to work with code using Git, you need to store your code in a Git repository .
Repositories, or repos, are storage containers for a project where you can save different
versions of your code.

There are two ways to start working with Git. First, you can clone an existing repository
using git clone. This will copy all the code and history from an existing project to your local
machine. Second, you can create a new repository using git init, which will have its own
versioning system and history.

The git init command creates an empty Git repository. init can be used to convert an existing

43 |Version control — Trainee Manual

https://careerkarma.com/blog/what-is-git/

project into a Git repository. The init command can also initialize an empty repository for a
new project.

What Happens When You Use Git Init

When you run git init, a folder called .git is created in your current working directory (the
folder you are viewing). This folder contains all the files and metadata used by the Git
version control system. For instance, in this folder you will see a file called HEAD. The Git
HEAD file_points to the Git commit which you are viewing on your local machine.

The git init command does not change the project in the folder in which you run the
command. This is because all the main files git needs are stored within the .git directory
that the git init command creates.

The git init command is the first command you’ll run if you are starting a new Git project
How to Use Git Init

The git init command is easy to use. You don’t need to create a repository on a server to
start working with a git repository. Instead, you only have to navigate into your project
folder and run the git init command.

Here’s the syntax to create a git repo using the git init command:
git init
This command will initialize a new Git repository in the current working directory. So, before

you run the command, make sure you are in the directory in which you want to initialize a
repository.

Alternatively, you can specify the directory in which the new repository should be
initialized. The syntax for doing so is as follows:

git init <folder>

Suppose we wanted to initialize a repository in a folder called demo-project . We could do
so using this code:

git init demo-project

When we run this command, a .git folder is created within our demo-project folder, instead
of in our current working directory.

You can run the git init command in a folder which already has an existing git configuration.
This is because git init does not override an existing configuration. So, if you accidentally
run git init in an existing Git repository, nothing will happen.

44| Version control — Trainee Manual

https://careerkarma.com/blog/what-is-a-git-head/
https://careerkarma.com/blog/what-is-a-git-head/

4.7 Configure .gitignore file
Configuring ignored files for a single repository

You can create a .gitignore file in your repository's root directory to tell Git which files and
directories to ignore when you make a commit. To share the ignore rules with other users
who clone the repository, commit the .gitignore file in to your repository.

GitHub maintains an official list of recommended .gitignore files for many popular
operating systems, environments, and languages in the GitHub/gitignore public repository.
You can also use gitignore.io to create a.gitignore file for your operating system,
programming language, or IDE.

Open Git Bash.

Navigate to the location of your Git repository.
Create a .gitignore file for your repository.

S touch .gitignore

If the command succeeds, there will be no output.

If you want to ignore a file that is already checked in, you must untrack the file before you
add a rule to ignore it. From your terminal, untrack the file.

S git rm --cached FILENAME
Configuring ignored files for all repositories on your computer

You can also create a global .gitignore file to define a list of rules for ignoring files in every
Git repository on your computer. For example, you might create the file
at ~/.gitignore_global and add some rules to it.

Open Git Bash.

Configure Git to use the exclude file ~/.gitignore_global for all Git repositories.
S git config --global core.excludesfile ~/.gitignore_global

Excluding local files without creating a .gitignore file

If you don't want to create a .gitignore file to share with others, you can create rules that
are not committed with the repository. You can use this technique for locally-generated
files that you don't expect other users to generate, such as files created by your editor.

Use your favorite text editor to open the file called .git/info/exclude within the root of your
Git repository. Any rule you add here will not be checked in, and will only ignore files for
your local repository.

45| Version control — Trainee Manual

https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#configuring-ignored-files-for-a-single-repository
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#configuring-ignored-files-for-all-repositories-on-your-computer
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#excluding-local-files-without-creating-a-gitignore-file
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#excluding-local-files-without-creating-a-gitignore-file
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#excluding-local-files-without-creating-a-gitignore-file

Open Git Bash.
Navigate to the location of your Git repository.

Using your favorite text editor, open the file .git/info/exclude.

g
Points to Remember

e Git's architecture is designed around the concept of a distributed version control system,
allowing users to work independently and collaborate seamlessly. There are the key co
mponents and concepts of Git's architecture including: Working Directory, Index (Staging
Area), Local Repository, Remote Repository.

e Git, a powerful distributed version control system, is built on several fundamental conce
pts that form the foundation of its functionality. Here are Git's basic concepts including:
Repository, commit, branch, merge, pull, push.

e To install Git on Windows, follow these steps:

1. Download the Git installer

2. Run the Git installer

3. Choose the installation options

4. Complete the installation

5. Verify the installation

® Basic commands to Configure GIT
1. Gitinit command
2. Git config command
3. Git - version command
@Eﬂ

XYZ Company, as part of your responsibilities, you need to showcase your expertise in Git for

our software development project. This involves installing the current version of Git, verifying

the installation, initializing a Git repository in the XYZ project folder, and configuring
the.gitignore file to exclude dot env file paths for security purposes

Application of learning 1.2.

46 | Version control — Trainee Manual

— = B S R
| Indicative content 1.3: Use of GitHub repository

\/ Duration: 6 hrs

E A
0@ Theoretical Activity 1.3.1: Description of GitHub
R

__
Things fo Do
3 \\ Tasks:

1. In small groups, you are requested to answer the following questions related to the
GitHub:
l. What do you understand about GitHub?
Il. Provide an explanation of:
e The features of GitHub
e Benefits of GitHub
e GitHub account

e Remote repository
e Git repository commands as used in GitHub.
Provide the answer for the asked questions and write them on papers.
3. Present the findings/answers to the whole class.
For more clarification, read the key readings 1.3.1. In addition, ask questions where
necessary.

&
Key readings 1.3.1: Description of GitHub

1. Definition of GitHub
GitHub is a large platform for code hosting. It supports version controlling and collaboration
and allows developers to work together on projects. It offers both distributed version
control and source code management (SCM) functionality of Git. It also facilitates
collaboration features such as bug tracking, feature requests, task management for every
project.
Essential components of the GitHub are:

o Repositories

o Branches

o Commits

o Pull Requests

o Git (the version control tool GitHub is built on)

47 |Version control — Trainee Manual

2. Benefits of GitHub
GitHub can be separated as the Git and the Hub. GitHub service includes access controls as
well as collaboration features like task management, repository hosting, and team
management.
The key benefits of GitHub are as follows.

o Itiseasy to contribute to open source projects via GitHub.

o It helps to create an excellent document.

o You can attract the recruiter by showing off your work. If you have a profile on

GitHub, you will have a higher chance of being recruited.
o It allows your work to get out there in front of the public.
o You can track changes in your code across versions.
. Features of GitHub

GitHub is a place where programmers and designers work together. They collaborate,
contribute, and fix bugs together. It hosts plenty of open source projects and codes of
various programming languages. It is a web-based platform that uses Git, the open-source
version control software, to help developers manage and share their code. Here are some
of its key features:

1. Collaboration
Bug tracking
Branches
Git repositories
Project management
Team management
Code hosting

® N OV AW

. Track and assign tasks

3.1. Collaboration

Collaboration is the process of two or more people, entities or organizations working
together to complete a task or achieve a goal. Collaboration is similar to cooperation

3.2. Integrated issue and bug tracking

Bug and issue tracking systems are often implemented as a part of integrated project
management systems. This approach allows including bug tracking and fixing in a general
product development process, fixing bugs in several product versions, automatic
generation of a product knowledge base and release notes.

3.3. Graphical representation of branches

A branch represents an independent line of development. Branches serve as an abstraction
for the edit/stage/commit process. You can think of them as a way to request a brand new
working directory, staging area, and project history.

3.4. Git repositories hosting

48 | Version control — Trainee Manual

A Git repository is a central storage location for managing and tracking changes in files and
directories. It is a crucial component of the Git version control system, which enables
collaborative development and allows multiple developers to work on a project
simultaneously.
3.5. Project management
Project management is the application of processes, methods, skills, knowledge and
experience to achieve specific project objectives according to the project acceptance
criteria within agreed parameters. Project management has final deliverables that are
constrained to a finite timescale it achieves by allowing multiple developers to collaborate
and share the tasks which will be merged to produce a full package of project.
3.6. Team management
For each repository that you administer on GitHub, you can see an overview of every team
or person with access to the repository. From the overview, you can also invite new teams
or people, change each team or person's role for the repository, or remove access to the
repository.
3.7. Code hosting
GitHub's code hosting capabilities make it a powerful platform for collaborative software
development, making it easier for developers and teams to work together on code projects,
whether they are open source or private repositories.
3.8. Track and assign tasks
GitHub's "Track and Assign Tasks" feature allows you to keep organized and assign work to
team members. You can create tasks, known as issues, with descriptions and due dates. You
can assign these issues to specific team members who are responsible for them.
Notifications keep everyone in the loop when tasks are assigned or updated. You can use
project boards to visually track task progress. Overall, this feature helps teams stay on top
of their work, delegate responsibilities, and make sure nothing falls through the cracks.
3.9. Conversations
git hub allows different developers to have conversation by allowing them to text each
other a message.

4. GitHub vs. Git
Git is an open-source distributed version control system that is available for everyone at
zero cost. It is designed to handle minor to major projects with speed and efficiency. It is
developed to co-ordinate the work among programmers. The version control allows you to
track and work together with your team members at the same workspace.
While GitHub is an immense platform for code hosting, it supports version controlling and
collaboration. It allows developers to work together on projects.
It offers both distributed version control and source code management (SCM) functionality
of Git. It also facilitates collaboration features such as bug tracking, feature requests, task
management for every project.

49 |Version control — Trainee Manual

GitHub

It is a cloud-based tool developed
around the Git tool.

It is an online service that is used to
store code and push from the computer
running Git.

It is dedicated to centralize source code
hosting.

It is managed through the web.

It provides a desktop interface called
GitHub desktop GUI.

It has a built-in user management
feature.

Git

It is a distributed version control tool that is
used to manage the programmer's source
code history.

Git tool is installed on our local machine for
version controlling and interacting with online
Git service.

It is dedicated to version control and code
sharing.

It is a command-line utility tool.

The desktop interface of Git is called Git GUI.

It does not provide any user management
feature

It has a market place for tool It hasa minimaltool configuration feature.

configuration.

5. Git commands related to repository
There are several Git commands related to managing and working with repositories. Here
are some common of these commands:
1. "Git init": Initializes a new Git repository in the current directory, creating a new ".git’
folder to store version control information.
2. "Git clone <repository-url>": Creates a local copy of a remote repository. The repository
URL can be obtained from the hosting platform (e.g., GitHub, GitLab).
3. "Git remote add <name> <repository-url>": Adds a remote repository to your local
repository. The '<name>" is an alias for the remote repository, and the “<repository-url> is
the URL of the remote repository.
4. "Git remote -v': Lists the remote repositories associated with your local repository, along
with their URLs.
5. "Git pull <remote> <branch>": Fetches changes from a remote repository and merges
them into the current branch in your local repository.
6. "Git push <remote> <branch>": Pushes your local commits to a remote repository. The
‘<remote>" is the remote repository alias, and the ‘<branch>" is the branch name.

50| Version control — Trainee Manual

7. Git branch: Lists all the branches in your local repository. The current branch is indicated
with an asterisk.

8. "Git branch <branch-name>": Creates a new branch with the specified name.

9. "Git checkout <branch-name>": Switches to the specified branch.

10. "Git checkout -b <branch-name>": Creates a new branch with the specified name and
switches to it.

11. "Git merge <branch-name>": Merges changes from the specified branch into the current
branch.

12. "Git status’: Shows the current status of your local repository, including modified files,
new files, and branch information.

13. "Git log™: Displays a log of commits in reverse chronological order, showing commit
hashes, authors, dates, and commit messages.

14. "Git add <file>": Adds a file to the staging area, preparing it for committing.

n»

15. "Git commit -m "<commit-message>"": Commits the changes in the staging area with a
descriptive commit message.

16. 'Git push --tags’: Pushes any tags that have been created to the remote repository.

&
sg Practical Activity 1.3.2: Using GitHub
P

:[h|m;s 1o Dn
: \\ Task:

1: Referring to the previous theoretical activity (1.3.1) you are requested to go to the
computer lab to use GitHub. This task should be done individually.

: Apply safety precautions.

: Present out the steps to use GitHub.

: Present your work to the trainer and whole class.

2

3

4: Referring to the steps provided on task 3, use GitHub.

5

6: Read key reading 1.3.2 and ask clarification where necessary
7

: Perform the task provided in application of learning 1.3.2.

Key readings 1.3.2: Creating account and repository on GitHub
1. Create GitHub Account
After installing Git on your machine, the next step is to create a free GitHub account by

following these steps:

51| Version control — Trainee Manual

1. Visit the official account creation page by Joining GitHub
2. Pick a username, enter your email address, and choose a password.

3. Opt for or opt out of receiving updates and announcements by checking/unchecking
the Email preferences checkbox.

4. Verify you're not a robot by solving the Captcha puzzle.

5. Click Create account.

Join GitHub

Create your account

Username * /
"

bosko-pnap

Email address * /
- Relalay] -

Password * /
"

bdake sure it's at least 15 characters OR at least & characters including a number and a lowercase letter.

Learn more

Email preferences

[sSend me occasional product updates, announcements, and offers.

Werify your account

~
Ty ——

By creating an account, you agree to the Terms of Service. For more information about GitHub s
privacy practices, see the GitHub Privacy Statement. We'll occasionally send you account-related

=mails.

6. GitHub sends a launch code to the specified email address. Copy-paste the code in the
designated field.

7. Optionally, enter account personalization details when asked or Skip, and click Continue.
You have now successfully created a GitHub account.

2. Create a Local Git Repository

After installing or updating Git, the next step is to create a local Git repository.

To create a Git repository, follow the steps below:

1. Open a Git Bash terminal and move to the directory where you want to keep the project

52| Version control — Trainee Manual

https://github.com/join

on your local machine. For example:
cd ~/Desktop

mkdir myproject

cd myproject/

In this example, we changed the directory to Desktop and created a subdirectory
called myproject.

2. Create a Git repository in the selected folder by running the git init command. The syntax
is:

git init [repository-name]

£ git init
Intials rin C:fUse es sktop/myproject/.git/

~/Desktop/myproject

|
Now you have successfully created a local Git repository.
3. Create New Repository on GitHub

GitHub allows you to keep track of your code when you're working with a team and need
to modify the project's code collaboratively.

Follow these steps to create a new repository on GitHub:
1. Log in and browse to the GitHub home page.

2. Find the New repository option under the + sign next to your profile picture, in the top
right corner.

MNew repository
Import repository
Mew gist

Mew organization

MNew project

53| Version control — Trainee Manual

3. Enter a name for your repository, provide a brief description, and choose a privacy
setting.

Create a new repository

Owner Repository name

0 bosko-pnap -~ / new-project

Great repository names are short and memorable. Need inspiration? How about
Description (optiona

A new test repository.

g Public
o Anyone on the internet can see this
(O] ﬁ Private

4. Click the Create repository button.
GitHub allows you to add an existing repo you have created locally.
4.Git commands related to repository
1. gitinit: Initializes a new Git repository in the current directory.
Example:
S git init
2. git clone <repository>: Creates a copy of a remote repository on your local machine.
Example:
$ git clone https://github.com/user/repository.git
3. git remote add <name> <url>: Adds a remote repository to your local repository.
Example:
S git remote add origin https://github.com/user/repository.git

4. git remote remove <name>: Removes a remote repository from your local
repository.

Example:

54| Version control — Trainee Manual

$ git remote remove origin

5. git remote -v: Lists the remote repositories associated with your local repository.
Example:
S git remote -v

6. git fetch <remote>: Fetches the latest changes from a remote repository without
merging them.

Example:
$ git fetch origin

7. git pull <remote> <branch>: Fetches the latest changes from a remote repository
and merges them into the current branch.

Example:
$ git pull origin main
8. git push <remote> <branch>: Pushes your local changes to a remote repository.
Example:
$ git push origin main
9. git branch: Lists all the branches in your repository.
Example:
$ git branch

10. git branch <branch_name>: Creates a new branch in your repository.

Example:
$ git branch new-feature
11. git checkout <branch>: Switches to an existing branch in your repository.
Example:
S git checkout main

12. git checkout -b <branch_name>: Creates and switches to a new branch in your
repository.

Example:

55| Version control — Trainee Manual

S git checkout -b new-feature
13. git merge <branch>: Merges a branch into the current branch.
Example:
S git merge feature-branch
14. git add <file>: Adds a file to the staging area to be included in the next commit.
Example:
S git add myfile.txt

15. git commit -m "<message>": Commits the changes in the staging area with a
descriptive message.

Example:
S git commit -m "Fix bug #123"
16. git log: Displays a log of commits in reverse chronological order.
Example:
S git log

17. git status: Shows the current state of your repository, including any untracked,
modified, or staged files.

Example:
S git status

18. git diff: Shows the differences between the working directory and the staging area.

Example:
S git diff
Steps to follow when performing git-config command
1. Open aterminal or command prompt
2. Check existing configurations (optional):
3. Set global or local configurations
4. Modify existing configurations

5. Remove configurations

56 | Version control — Trainee Manual

6. Confirm configurations
Steps to perform git commands related to repository:
1. Git Clone

1. Open Terminal or Command Prompt: Open the Terminal (on macOS and Linux) or
Command Prompt (on Windows) on your computer. This will be the interface where you'll
enter Git commands.

2. Navigate to the Desired Directory: Use the ‘cd’ command to navigate to the directory
where you want to clone the repository. For example, if you want to clone the repository
into the "Documents" folder, use the following command:

cd Documents

3. Clone the Repository: Use the "git clone’ command followed by the URL of the repository
you want to clone. The URL can be obtained from the repository's GitHub page. For
example, if the repository URL is “https://github.com/username/repository.git’, use the
following command:

git clone https://github.com/username/repository.git

4. Provide Credentials (if required): If the repository is private and requires authentication,
Git may prompt you to enter your GitHub username and password or access token. Enter
the required credentials to proceed with the cloning process.

5. Wait for Cloning to Complete: Git will begin cloning the repository into the current
directory.

2. Git Remote

To apply Git commands related to remote repositories, such as “git remote’, follow these
steps:

1. Navigate to the Local Repository: Open the Terminal or Command Prompt and navigate
to the directory of your local Git repository using the “cd” command.

2. Check Existing Remotes: To see the list of existing remote repositories associated with
your local repository, use the “git remote’ command. This will display the names of the
remote repositories. For example: git remote

3. Add a Remote: To add a new remote repository, use the "git remote add" command
followed by a name and the URL of the remote repository. The name can be anything you
choose, and the URL should be the address of the remote repository. For example:

git remote add origin https://github.com/username/repository.git

In this example, “origin’ is the name given to the remote repository, but you can choose

57| Version control — Trainee Manual

a different name if you prefer.

4. Rename a Remote: If you want to rename an existing remote repository, use the “git
remote rename’ command followed by the current name and the new name. For example,
to rename the remote repository from “origin’ to "new-origin’, use the following command:

git remote rename origin new-origin

5. Remove a Remote: If you want to remove an existing remote repository, use the “git
remote remove’ command followed by the name of the remote repository. For example,
to remove the remote repository named “origin’, use the following command:

git remote remove origin

6. Get Detailed Information: To get more detailed information about a specific remote
repository, use the ‘git remote show’ command followed by the name of the remote
repository. For example, to get detailed information about the remote repository named
‘origin’, use the following command: git remote show origin

N
Points to Remember

e GitHub, widely used platform for software development and collaboration, offers ar
ange of features that facilitate version control, project management, code sharing, a
nd team collaboration. There are some key features of GitHub including: Collaboratio
n, Integrated issue and bug tracking, Graphical representation of branches, Git reposi
tories hosting, Project management, Team management.

e GitHub accounts are user profiles on the GitHub platform that provide individuals an
d organizations with access to various features and functionalities for managing and
collaborating on software projects.

To use GitHub effectively, follow these steps:
Create GitHub account

Create repository in your account

Perform git-config command

P w N e

Perform git commands related to repository

58| Version control — Trainee Manual

@Eﬂ

Alex, a software developer, is starting a new project to build a personal finance tracking
application. Alex wants to use GitHub to manage the project's version control and collaborate

Application of learning 1.3.

with other developers. How Alex goes through the process to perform these tasks:
Set Up the Project Directory

Initialize Git Repository

Create a GitHub Repository

Link Local Repository to GitHub

Add Initial Files

Push to GitHub

Collaborate with Other Developers

No vk wNRE

59| Version control — Trainee Manual

e
=
)

Tt —mEI

Learning outcome 1 end assessment

Theoretical assessment

1. Read the Following statement and answer by true if correct or false otherwise

Version control systems (VCS), including distributed versions like Git, are essential tools in

software development that enable tracking changes over time, facilitate collaboration, and

maintain a comprehensive version history. Through concepts like branching and merging,

developers can work on separate features or fixes independently and later integrate them

into the main codebase. Key commands like git pull to fetch and merge changes, git status to

view repository state, and git branch to manage branches, all contribute to efficient project

management by providing snapshots of the project at specific points and allowing seamless

collaboration.

a.

Version control systems (VCS) track changes to files over time, enabling collaboration
and version history.

Distributed version control systems (DVCS) allow each user to have a complete copy
of the repository with its full history.

Branching in version control allows developers to work on separate features or fixes
without interfering with the main codebase.

Merging in version control combines changes from one branch or fork into another,
integrating separate lines of development.

Commits in version control systems are snapshots of the entire project at a specific
point in time, including all tracked files.

git pull fetches changes from a remote repository and merges them into the local
repository.

git status displays information about the current state of the repository, such as
modified files and branch status.

git branch is used to create, list, delete, or manipulate branches in a Git repository.

60| Version control — Trainee Manual

2. Match Git commands with its corresponding description

Command Description

Git Commit 1. Manages connections to remote repositories.

Git Clone 2. Copies a repository from a remote source to your local machine.

Git Push 3. Fetches and merges changes from a remote repository to your local
repository.

Git Pull 4.Removes files from the working directory and stages the removal for

the next commit

Git Remote 4.Records changes to the repository

Git Status 5. Uploads local repository content to a remote repository.
Git Config 6. Sets configuration options for Git on your local machine.
Git rm 7.Shows the current state of the repository, including tracked/untracked

files and changes

3.Read the following sentences and Fill the gap with the missing word.

1.

R S

o

10.

The command git is used to create a new branch in Git.

A Git is a pointer to a specific commit in the repository's history.

git checkout is used to switch between branches in Git.

To list all branches in a Git repository, you can use git branch

A Git is a copy of a repository that lives on your computer instead of on a
website's server.

git merge is used to integrate changes from one branch into another.

git remote is used to manage connections to remote repositories.

git push origin is used to push the changes of the current branch to a
remote repository.

A centralized version control system offerscccceeerieveineennnns a way to collaborate
using a central server.

Distributed version control system allows management branching and
merging.

4 . Read this statement and answer by true if correct or false otherwise

Git Bash is a command-line interface for interacting with Git, a version control system. The git

init command initializes a new, empty repository, while git clone is used to clone an existing

remote repository. The git status command shows the state of the working directory,

including untracked files, and git version displays the installed Git version.

61| Version control — Trainee Manual

a) Git bash is one among version control system that exist

b) Gitinitis used to clone remote repository

c) Git status is used to initialize an empty repository

d) In git you can view untracked files by using git version command

Practical assessment

Mugabe XY holds the position of Senior Developer at Innovate Company Ltd, situated in
Ruhango District. He has delegated a project to four developers, tasking them with designing
a web application featuring various forms: login, student registration, course registration, and
book registration, all using HTML. However, due to geographical constraints and other
commitments, the developers found it challenging to collaborate effectively on the project.
Consequently, the Senior Developer opted to assign tasks to each developer individually and
remotely, recommending them to work autonomously on their designated tasks by referring
to this repository structure.

|— login.html

|— student_registration.html

|-— course_registration.html

|-— book_registration.html

— README.md

L— gitignore

As one of the developers at the company, you have been assigned the following task:

Create a remote repository on GitHub using your full name as the repository name.

Clone the repository to your local computer.

Within the repository, create the required forms mentioned above for subsequent commits.

62| Version control — Trainee Manual

o
&‘ References

JavaTpoint. (n.d.). Git Version Control System. Retrieved from
https://www.javatpoint.com/git-version-control-system
JavaTpoint. (n.d.). IntelliJ IDEA Version Control. Retrieved from

https://www.javatpoint.com/intellij-idea-version-control

Red Hat Developers. (2023, August 2). Beginner's guide to Git version control. Retrieved from
https://developers.redhat.com/articles/2023/08/02/beginners-guide-git-version-control#
JavaTpoint. (n.d.). Git. Retrieved from https://www.javatpoint.com/git

JavaTpoint. (n.d.). How to Install Git on Windows. Retrieved from
https://www.javatpoint.com/how-to-install-git-on-windows

TutorialsPoint. (n.d.). Git Environment. Retrieved from
https://www.tutorialspoint.com/git/git environment.htm

JavaTpoint. (n.d.). GitHub. Retrieved from https://www.javatpoint.com/github

63| Version control — Trainee Manual

https://www.javatpoint.com/git-version-control-system
https://www.javatpoint.com/intellij-idea-version-control
https://developers.redhat.com/articles/2023/08/02/beginners-guide-git-version-control
https://www.javatpoint.com/git
https://www.javatpoint.com/how-to-install-git-on-windows
https://www.tutorialspoint.com/git/git_environment.htm
https://www.javatpoint.com/github

LOCAL REMOTE

L =
8
git add glt
git commit
git push
git fetch
git checkout

64| Version control — Trainee Manual

Indicative contents
2.1: Adding file change to Git staging area

2.2: Commit file changes to Git local repository and manage branches

Key Competencies for Learning Outcome 2: Manipulate files

Knowledge Skills Attitudes

e Description of git status | e Applying git status| e Being Adaptability

command commands e Being Practical
e Description of git | e Performing Operation oriented

commands operations on git add command e Have Communication
e Description of commit| e Using staging area skills

message e Performing File | e Have Creativity
e Introduction of branches management e Have critical thinking

operations commands e Being Problem solver

e Applying git commit | e Have Team work
command

e Applying Operations
on git branches

e Adding file change to
git staging area

Duration:20 hrs

Learning outcome 2 objectives:

‘9

By the end of the learning outcome, the trainees will be able to:

1. Describe clearly git status command based on git command.

2. Describe properly git command operations based on the project requirements
3. Introduce clearly operations on branches based on project requirements.

4. Add correctly file change to git staging area based on operations.

5. Apply correctly git commit command based on project content

6. Performing properly file management commands based on project requirements.
Apply clearly operations on branches based on project standard .

- . EA
MResources

65|Version control — Trainee Manual

Equipment Tools Materials
e Computer e Git ® |Internet
e GitHub e Electricity
e Text editor (vs code)
e Terminal (CMD,
Gitbash).

66| Version control — Trainee Manual

—

j Indicative content 2.1: Add file change to Git staging area

\/ Duration:10 hrs

Theoretical Activity 2.1.1: Description of staging area

Things 1006
g Tasks:

1. In small groups, you are requested to answer the following questions related to the

staging area:
I. Describe the operations of these commands:
e git status command
e gitadd command
e git reset command
e Rm command
Participate in group formulation
Present your findings to your classmates and trainer
For more clarification, read the key readings 2.1.1. In addition, ask questions where
necessary.

g
v Key readings 2.1.1.: Description of staging area
1. The staging area
In Git, staging area also known as the index, is a crucial intermediate step in the Git
workflow that allows users to prepare and organize changes before committing
them to the repository. When modifications are made to files in the working
directory, the staging area acts as a holding area where users can selectively choose
which changes to include in the next commit. By using the “git add’ command, users
can move specific changes from the working directory to the staging area,
effectively staging them for the next commit. This process enables users to review,
fine-tune, and organize their changes before creating a commit, promoting a
structured and controlled approach to version control.

2. Git status command

2.1 Definition of git status command

The "git status" command is a command used in the Git version control system to
displays information about the current state of the repository, such as the status of
tracked and untracked files, the branch being worked on, and any changes that have
been made.

Mostly, it is used to display the state between Git Add and Git commit command.
We can check whether the changes and files are tracked or not.

67| Version control — Trainee Manual

https://www.javatpoint.com/git-add
https://www.javatpoint.com/git-commit

2.2 Operations on git status command
1. View new untracked files:

When you run “git status’, it will display a section titled "Untracked files" that lists
any new files in your working directory that Git is not currently tracking. These files
have not been staged or included in any previous commits. It provides you with a
list of files that you may want to consider adding to your repository.

2. View modified files:

In the "Changes not staged for commit" section of the “git status” output, you will
see a list of modified files in your working directory that have not been staged.
These files have changes compared to the last commit. Git will show you the names
of the modified files so that you can review the changes made to them.

3. View deleted files:

Similarly, in the "Changes not staged for commit" section, “git status’ will also
display any deleted files that have not been staged. These are files that were
present in the last commit but have been deleted in your working directory since
then. Git will show you the names of the deleted files, allowing you to review the
deletions.

The git add command is used to add changes or new files to the staging area in Git.
It prepares the changes or files to be included in the next commit.

3. Git add command

3.1 Definition of git add command

The "git add" command is used in Git to add changes or new files to the staging
area. The staging area is a temporary storage space where you can gather and
prepare changes before committing them to the Git repository.

It tells Git that you want to include updates to a particular file in the next commit.
However, git add doesn't really affect the repository in any significant way changes
are not actually recorded until you run git commit.

Here are a few common usages of the "git add" command:

Adding specific files: You can add specific files to the staging area by specifying their
names or paths. For example, to add a file named "example.txt", you would run:
git add example.txt

Adding all changes: You can add all modified and new files in the current directory
and its subdirectories to the staging area using the following command:

git add

Adding changes interactively: Git provides an interactive mode for selectively
staging changes. You can use the following command to launch the interactive
mode:

git add -i

This allows you to choose which changes to add by selecting them from a menu.

68| Version control — Trainee Manual

After using the "git add" command, the changes or files you specified will be moved
to the staging area. You can then review the changes using "git status" and proceed
with committing them using the "git commit" command.

The git add command is used to add file contents to the Index (Staging Area).This
command updates the current content of the working tree to the staging area. It
also prepares the staged content for the next commit. Every time we add or update
any file in our project, it is required to forward updates to the staging area.

3.2 Operations on git add command

1. Stage allfiles:

When you use the “git add . command, Git scans the current directory and its
subdirectories, identifying any modified and new files. It adds these files to the
staging area, which is a space where you can prepare your changes for the next
commit.

By staging all files, you are telling Git to include all modifications and additions made
to the files in the next commit. This operation allows you to commit all changes
made to your project at once, without having to specify individual files.

2. Stage a file:

When you use the “git add <file>" command, Git adds the specified file to the staging
area. This means that Git records the current state of the file, including any
modifications you made to it since the last commit.

Staging a file allows you to selectively include changes from specific files in your
commits. It helps you organize your commits by grouping related changes together.
Only the staged files will be included in the next commit when you run “git commit’.
3. Stage a folder:

Git does not have a direct command to stage a folder. However, when you use the
“git add <folder>" command, Git scans the specified folder and its subdirectories. It
identifies any modified and new files within the folder and adds them to the staging
area.

Staging a folder allows you to include changes from multiple files within a specific
directory in a single commit. It provides a convenient way to organize your changes
when you have made modifications to multiple files within a folder.

In summary, staging files using the “git add” command allows you to prepare your
changes for the next commit. By staging files, you are telling Git to include those
changes in the commit, making them a part of your project's history. Whether you
stage all files, a specific file, or a folder, it helps you manage and organize your
changes effectively before committing them to your repository.

4. Git reset command

4.1 Definition of git reset command

69| Version control — Trainee Manual

https://www.javatpoint.com/git-index

The "git reset” command is used in Git to move the HEAD and branch pointer to a
specific commit or to unstage changes. It allows you to manipulate the commit
history and the staging area. The behavior of "git reset" varies depending on the
options and arguments used.
Here are a few common usages of the "git reset" command:

1. Resetting the HEAD and branch pointer: You can move the branch pointer and the
HEAD to a specific commit, effectively discarding commits. For example, to reset the
branch pointer to a commit identified by its SHA-1 hash, you would run:

git reset <commit-SHA>
By default, "git reset" moves the branch pointer to the specified commit and
leaves the changes made in the discarded commits as uncommitted modifications.

2. Unstaging changes: If you have added changes to the staging area using "git add"
and you want to remove them from the staging area, you can use the "--mixed"
option with "git reset". This option is the default behavior if you don't specify any
mode. For example: git reset HEAD
This command moves the changes from the staging area back to the working
directory, leaving the commit history and working directory unchanged.

3. Discarding changes: To completely discard changes in both the working directory
and the staging area, you can use the "--hard" option with "git reset". For example:
git reset --hard HEAD
This command resets the branch pointer, the staging area, and the working
directory to the specified commit, effectively discarding all changes made after that
commit.

It's important to note that the "git reset" command modifies the commit history, so
caution should be exercised when using it. It's recommended to create a backup or
ensure that you have a clear understanding of the consequences before using it.
4.2 Operations on git reset command

1. Unstage a file:

When you want to remove a file from the staging area without discarding the
changes made to that file, you can use the “git reset’ command. Specifically, the “git
reset <file>" command allows you to unstage a specific file.

By running “git reset <file>", Git moves the specified file from the staging area back
to the working directory. This means that the file is no longer marked for the next
commit. However, the changes made to the file are preserved, allowing you to make
further modifications or stage it again later if needed.

Unstaging a file with "git reset” provides flexibility in managing your staged changes,
allowing you to selectively remove files from the staging area while retaining the
modifications made to them.

70| Version control — Trainee Manual

2. Deleting and staging a folder:

Git does not have a direct command to delete or stage a folder. However, you can
achieve the desired effect by combining different Git commands, including “git
reset’.

To delete a folder and stage the deletion, you can follow these steps:

1. Use the “git rm -r <folder>" command to recursively remove the folder and its
contents from both the working directory and the Git repository. This permanently
deletes the folder and its files.

2. Run “git reset’ to unstage the deletion. For example, “git reset <folder>" or “git
reset .” (to unstage all changes).

3. At this point, the folder deletion is unstaged, and the folder and its contents still
exist in your working directory. You can choose to commit the deletion or make
further modifications before committing.

By combining “git rm -r” and “git reset’, you can effectively delete a folder and stage
the deletion, providing control over the removal of folders from your repository.
Using the “git reset’ command with these operations allows you to unstage files
from the staging area while preserving their changes and delete folders from the
repository while having the option to modify or stage them again before
committing. It offers flexibility in managing your staging and deletion actions within
Git.

5. Rm command

5.1 Definition of rm command

The "git rm" command is used in Git to remove files from the Git repository. It is
primarily used to delete files that are tracked by Git and stage the deletion for the
next commit.

Here are a few common usages of the "git rm" command:

1. Removing a file from the repository: You can use the following command to remove
a file from the Git repository and stage the deletion: git rm <file>
Replace <file> with the name or path of the file you want to remove. This command
not only removes the file from the current working directory but also stages the
deletion for the next commit.

2. Removing a file from the repository without deleting it locally: If you want to
remove a file from the Git repository but keep it in your local working directory, you
can use the "--cached" option with "git rm". For example: git rm --cached <file>
This command removes the file from the repository but leaves it intact in your local
working directory. The file will be untracked, and future changes to the file will not
be tracked by Git.

71| Version control — Trainee Manual

3. Removing multiple files or using shell patterns: You can use shell patterns or specify
multiple files to remove multiple files at once. For example:
git rm *.txt
This command removes all files with the ".txt" extension from the repository and
stages the deletions.
After using the "git rm" command, the file(s) will be removed from the repository,
and you will need to commit the changes using "git commit" to make the deletion
permanent in the Git history.
5.2 Operations on rm command
1. Remove and stage a file:
The “git rm" command allows you to remove a file from both your working directory
and the Git repository, while also staging the removal. When you run the following
command:
git rm <file>
Replace “<file>" with the name or path of the file you want to remove.
This operation removes the specified file from your working directory and stages
the removal, which means that the file will be marked for deletion in the next
commit. The file will no longer be present in your repository or working directory
after you commit the changes.
Removing and staging a file using "git rm” is useful when you want to permanently
delete a file from your project and include the deletion in the commit history.
2. Remove and stage a folder:
Git does not have a direct command to remove and stage a folder. However, you
can achieve the desired effect by combining different Git commands, including the
‘git rm’ command.
To remove and stage a folder, you can follow these steps:
1. Use a file system command (e.g., ‘'rm -r’ on Unix-like systems or ‘rd /s /q on
Windows) to remove the folder and its contents from your working directory.
2. Run “git rm -r --cached <folder>" to stage the removal of the folder:
git rm -r --cached <folder>
Replace “<folder>" with the name or path of the folder you want to remove.
This command removes the specified folder from the Git repository and stages
the removal. The "--cached" flag ensures that the folder is only removed from the
Git repository, not from your working directory.

72| Version control — Trainee Manual

o
sg Practical Activity 2.1.2: Adding file change to Git staging area

i
'_M \\ Task:

1: Read key reading 2.1.2 and ask clarification where necessary

2: Referring to the previous theoretical activity (2.1.1) you are requested to go to the
computer lab to add file change to git staging area. This task should be done individually.
3: Apply safety precautions.

4: Present out the steps to add file change to git staging area.

5: Referring to the steps provided on task 3, add file change to git staging area

6: Present your work to the trainer and whole class

At

p Key readings 2.1.2: Applying Git commands to change files

1. Adding file change to staging area.

To add file changes to the Git staging area, follow these steps:

1. Check the Status:

- Before adding file changes, check the status of your repository using "git status’ to
see which files have been modified.

2. Add Changes:

- Use the “git add® command followed by the filename to stage specific changes. For
example, to stage a single file, use "git add <filename>".

3. Stage All Changes:

- To stage all changes in the working directory, you can use ‘git add * to add all
modified files or “git add --all’ to include all changes, including deleted files.

4. Review Staged Changes:

- Verify the changes staged for commit by running “git status™ again. The staged
changes will be listed under "Changes to be committed."

5. Commit Staged Changes:

- Once the desired changes are staged, commit them to the repository using “git
commit -m "Your commit message" to create a new commit with the staged
modifications.

2. Operations on git status command

2.1 View new untracked file

To view new untracked files in Git, you can use the “git status’ command. Here are
the steps to do it practically:

1. Open your terminal or command prompt.

73| Version control — Trainee Manual

2. Navigate to the root directory of your Git repository using the “cd® command. For
example:

cd /path/to/your/repository

3. Run the git status’ command:

git status

This command will display the current status of your repository, including any
untracked files.

4. Look for the section labeled "Untracked files". It will list all the files in your working
directory that are not tracked by Git.

For example:

Untracked files:

(use "git add <file>..." to include in what will be committed)

new_file.txt

In this example, ‘new_file.txt" is an untracked file.

By running “git status’, you can easily see the list of untracked files in your repository.
This helps you identify any new files that Git is not currently tracking. If you want to
include these untracked files in your Git repository, you can use the ‘git add’
command to stage them for the next commit.

Example2 that show the case

Trainer@DESKTOP-256N6KI MINGWGES (master)
% git status

On branch master

No commits wet
Changes to be committed:

{use "git rm --cached <file=..." to unstage)
new file: FormStudent. html

From that image before, there is no untracked files
Let us create a file called “studentregistration.html” inside our repository by using
touch Flile name

Then after run git status and see what happen
Trainer@DESKTOP-256N6KS MINGWE4

%]

(master)
% touch studentregistration.html
Trainer@DESKTOP-256MN6KS MINGWES (master)
% git status
On branch master
Mo commits wet
Changes to be committed:
{use "git rm --cached «<filex=..."™ to unstage)
new Tile: FormStudent. hitm
Untracked files:
(use "git add «File=..." to include in what will be committed)
studentregistration. html

74| Version control — Trainee Manual

For that case it displays studentregistration.html is under untracked becouse it has
been created but not staged means that it is under working stage.

2.2 View modified file

Let's assume you have a Git repository with some files, and you have made changes
to one of the files. Follow these steps to view the modified file:

1. Open your terminal or command prompt.

2. Navigate to the root directory of your Git repository using the ‘cd® command. For
example: cd /path/to/your/repository

3. Run the ‘git status’ command:

This command will display the current status of your repository, including any
modified files.

4. Look for the section labeled "Changes not staged for commit". It will list all the
modified files in your working directory.

For example:

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

modified: file.txt

In this example, “file.txt" is the modified file.

By running “git status’, you can easily identify the modified file in your repository. Git
will display the file name and indicate that it has been modified. This allows you to
keep track of changes made to your files and helps you decide how to proceed, such
as staging the modifications for the next commit using the "git add" command

All modified files or changed files are viewed by using Git status
§ git status .
On branch master

Mo commits wet

Changes to be committed:
(use "git rm --cached <file=..." to unstage)
new file: FormStudent. hitm

Untracked files:
(use "git add <file=..." to include in what w11l be committed)
studentregistration. html

2.3 View deleted file

To view deleted files in Git, you can use the ‘git status’ command. Here's a clear
example of how to do it practically:

Assuming you have a Git repository and you have deleted a file. Follow these steps
to view the deleted file:

1. Open your terminal or command prompt.

2. Navigate to the root directory of your Git repository using the ‘cd” command. For
example:

75| Version control — Trainee Manual

cd /path/to/your/repository

3. Run the “git status’ command:

git status

This command will display the current status of your repository, including any deleted
files.

4. Look for the section labeled "Changes not staged for commit". It will list all the
deleted files in your working directory.

For example:

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

deleted: deleted_file.txt

In this example, ‘deleted_file.txt" is the deleted file.

By running “git status’, you can easily identify the deleted file in your repository. Git
will display the file name and indicate that it has been deleted. This helps you keep
track of the changes made to your files and allows you to decide how to proceed,
such as committing the deletion using the appropriate Git command.

Remember that to delete a file you use git rm <filename> once you have deleted a
file in git you can view them by using Git status.

$ g1t rm thirc

rm "third.txt'

§ g1t status
On branch master

Changes to be committed:
(use "git reset HEAD <filex..." to unstage)

3.0Operation on git add command

3.1 Stage all files

Git add files

Git add command is a straight forward command. It adds files to the staging area. We
can add single or multiple files at once in the staging area. It will be run as:

S git add <File name>

The above command is added to the git staging area, but yet it cannot be shared on
the version control system. A commit operation is needed to share it. Let's
understand the below scenario.

We have created a file for our newly created repository in NewDirectory. To create
a file, use the touch command as follows:

$ touch newfile.txt

76 | Version control — Trainee Manual

And check the status whether it is untracked or not by git status command as follows:
S git status

The above command will display the untracked files from the repository. These files
can be added to our repository. As we know we have created a newfile.txt, so to add
this file, run the below command:

$ git add newfile.txt

Consider the below output:

~/Desktop/NewDirectory (

~/Desktop,/NewDirectory (mas
$ git status
on branch master

WO commi

"to include in what will be committed)

nothing added to commit but untracked files present

~/Desktop/NewDirectory (mas

f git add newfile.txt

From the above output, we can see newfile.txt has been added to our repository.
Now, we have to commit it to share on Git.

3.2 Git Add All

We can add more than one files in Git, but we have to run the add command
repeatedly. Git facilitates us with a unique option of the add command by which we
can add all the available files at once. To add all the files from the repository, run the
add command with -A option. We can use "." Instead of -A option. This command will
stage all the files at a time. It will run as follows:

Sgitadd -A

Or

Sgitadd.

The above command will add all the files available in the repository. Consider the
below scenario:

We can either create four new files, or we can copy it, and then we add all these files
at once. Consider the below output:

77| Version control — Trainee Manual

~/Desktop,/NewDirectory

~/Desktop,/NewDirectory
. touch newfilel. txt

/Desktop/NewDirectory

, touch newfile2.txt

op,/NewDirectory

op/NewDirectory

To unstage)

"to include in what will be committed)

In the above output, all the files are displaying as untracked files by Git. To track all
of these files at once, run the below command:

S git add -A

The above command will add all the files to the staging area. Remember, the -A
option is case sensitive. Consider the below output:

§ git add -a

$ git status
on branch master

No commi

to be committed:
"git rm --cached <file>..." to unstage)

In the above output, all the files have been added. The status of all files is displaying
as staged.
3.3 Adding all files by extension

78| Version control — Trainee Manual

In some cases, you may be interested in adding all files that have a specific extension:
* txt or *.js for example.

To add all files having a specific extension, you have to use the “git add” command
followed by a wildcard and the extension to add.

S git add *.txt

S git add *.js

As an example, let’s say that you have created two Javascript files and one text file.

» origin)

to include in what will be committed)

nothing added to commit but unt

In order to add all Javascript files, we are going to use the wildcard syntax followed
by “*.js”.
S git add *.js

» origin)

» origin)

" to uns

to include in what will be committed)

Using dot with git add

the “.” symbol stands for “current directory “

As a consequence, if you don’t use it at the top of your project hierarchy, you will
only add files in the current working directory.

To illustrate this concept, let’s say that you have two new files: “root-file” in your

project top folder and “new-file” in a folder named “folder”.

feature -> origin)

to include in what will be committed)

79| Version control — Trainee Manual

https://www.computerhope.com/jargon/w/wildcard.htm

If you navigate to your new folder and execute the “git add” command with the dot
syntax, you will notice that you only add files located in this directory.

S cd folder

$ git add

» origin)

> origin)

to unstage)

include in what will be committed)

As a consequence, you might miss some of your files in your commit.

To avoid this problem, you can use the dot syntax combined with the absolute path
to your project top folder.

S git add <path>/.

» origin)

» origin)

3.4 Stage afile
The operation of staging a file using the "git add" command allows you to selectively

include changes made to a specific file in the staging area. To stage a file, you specify
the path to that file as an argument to the "git add" command. For example:

git add path/to/file.txt

This command stages the changes made to the "file.txt" file, enabling you to include
those changes in the next commit. Staging a file individually allows you to isolate and
commit specific modifications without affecting other files in your working directory.
Before staging a file, you have to check all existing files and unstagged files for existing
files you use Is command.

Remember that git add is used once moving a file from workspace to stagging area.
For stagging a single file use git add filename.extension

For file extension use .html, .dog, .js, and others.

80|Version control — Trainee Manual

Example: git add index.html that command will add the index file to stagging area as
shown on that image.

$ git status
on branch master

NO commits yet

Changes to be committed:
(use "git rm cached ... TO unstage)

Once you want to stage all unstaged files at the sametime you write git add . or git
add A
3.5 Stage folder
The operation of staging a folder using the "git add" command enables you to include
changes made to multiple files within a directory and its subdirectories in the staging
area. By executing the command:
git add path/to/folder/
To stage a folder in Git, you can use the “git add® command with the folder's path.
Here's how you can do it practically:
1. Open your terminal or command prompt.
2. Navigate to the root directory of your Git repository using the ‘cd* command. For
example:

cd /path/to/your/repository
3. Run the following command to stage a folder:

git add <folder>

Replace "<folder>" with the name or path of the folder you want to stage.

For example, if you want to stage a folder named "myfolder", the command would
be:

git add myfolder

This command stages the specified folder and all its contents for the next commit.
4. Verify the staged changes by running the “git status’ command:

git status

You will see that the folder and its contents are now staged for the next commit.
For example:
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: myfolder/filel.txt
modified: myfolder/file2.js
deleted: myfolder/file3.html
By using ‘git add <folder>", you can stage a specific folder and its contents in your
repository. This allows you to include all changes within that folder in a single commit.

8l1|Version control — Trainee Manual

Remember to review the changes and commit them using the appropriate Git
command when you are ready.
4. Operations on git reset command

Git Reset
Before Reset JO—Q_O «— :
O—0O @@«

After Reset :]

Orphans
O—CO O—O «

Figure 10: Git Reset diagram

The git reset command is used to undo the changes in your working directory and get
back to a specific commit while discarding all the commits made after that one.

For instance, imagine you made ten commits. Using git reset on the first commit will
remove all nine commits, taking you back to the first commit stage.

Before using git reset, it is important to consider the type of changes you plan to
make; otherwise, you will create more chaos than good.

git reset repositoryName

The default option is git reset --mixed, which updates the current branch tip and
moves anything in the staging area back to the working directory. We'll take a closer
look at all three, but first let's create a basic Git repo with the following structure and
show a simple git reset command in action:

git-reset-repositoryName/

filel.ext

dirl/

dirlfilel.ext

Assuming we have already made our initial commit, let's add some text to filel.ext
and dirlfilel.ext and stage and commit them both in separate commits.

Next, let's make one more change to filel.ext and only stage the changes (but not
commit), then we'll run a git log followed by a git status to check out the state of
things:

S git log --oneline

d66f707 (HEAD -> master) Change 2

32¢2d09 Change 1

38e2a6e Initial commit

82|Version control — Trainee Manual

https://www.initialcommit.com/blog/What-Is-An-Initial-Commit-In-Git

Next let's run git status:
S git status
On branch master
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: filel.ext
As we can see from our output, we have a commit history reflecting three commits,
along with one staged file sitting in the staging index. Note that git diff can also be
useful to check the state of things. Let's run a basic git reset command and check our
log and status once more:
S git reset
Unstaged changes after reset:
M filel.ext
S git log --oneline
d66f707 (HEAD -> master) Change 2
32c¢2d09 Change 1
38e2a6e Initial commit
S git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: filel.ext
no changes added to commit (use "git add" and/or "git commit -a")
A quick glance at the output tells us that a basic git reset without a specific commit
parameter left the commit history unchanged, while unstaging our modified file and
moving it back to the working directory.
It's important to note that our changes still exist, as the working directory was left
untouched. Git reset merely moved the change out of the staging area because it
defaults to the --mixed option, in contrast with --hard which will wipe out the changes
in the working directory as well.
4.1 Unstage afile
In Git, to unstage a file that you've previously added to the staging area, you can use
the "git reset" command. Here's how you can do it:
1. First, ensure you are in the root directory of your Git repository.
To check the status of your repository and see which files are staged and unstaged,
use the following command:
git status

83|Version control — Trainee Manual

https://www.initialcommit.com/blog/git-diff

3. If you see the file you want to unstage under the "Changes to be committed" section
(staged changes), you can unstage it using the following command:
git reset HEAD <file>
For example, if you want to unstage a file named "example.txt," you would run:
git reset HEAD example.txt
This command moves the changes from the staging area back to the working
directory, effectively "unstaging" the file.

4. After unstaging the file, you can verify its status using git status again.

Example:

4.2 Deleting and staging file/folder

Deleting and staging a file/folder involves two separate steps: deleting the file/folder
from your working directory and then staging the deletion for the next commit.
Here's how you can do it:

1. To delete a file from your working directory, you can use the standard file system
command, such as rm on Unix-based systems or del on Windows. For example, to
delete a file named "example.txt"
on Unix: rm example.txt
On Windows: del example.txt
Alternatively, you can use the Git command to delete the file, which will both remove
it from the working directory and stage the deletion:
git rm <file>
For example:
git rm example.txt

2. After deleting the file, it is removed from the working directory, but its deletion is not
yet committed. To stage the deletion for the next commit, you need to run:
git add <file>
For example:
git add example.txt

3. At this point, the file deletion is staged and will be part of the next commit. To
complete the process, commit the changes:
git commit -m "Deleted example.txt"
Replace the commit message with an appropriate message for your changes.
Please note that the git rm command is used to delete a file from both the working
directory and the repository. If you want to keep the file in your working directory
but remove it from the repository (staged deletion), you can use the git rm --cached
<file> command instead of git rm <file>.
5. Operations on rm command
5.1 Remove and Stage a File:

1. First, ensure you are in the root directory of your Git repository.

84 |Version control — Trainee Manual

2. To remove the file from both the working directory and the repository (staged
deletion), use the following command:
git rm <file>

For example, if you want to remove a file named "example.txt":
git rm example.txt

3. After running the git rm command, the file is removed from the working directory
and staged for deletion. To complete the process, commit the changes:

git commit -m "Deleted example.txt"
Replace the commit message with an appropriate message for your changes.
5.2 Remove and Stage a Folder (Directory):
First, ensure you are in the root directory of your Git repository.
To remove the folder and its contents from both the working directory and the
repository (staged deletion), use the following command:

git rm -r <folder>

For example, if you want to remove a folder named "examples":

git rm -r examples
The -r flag tells Git to recursively remove the directory and its contents.

3. After running the git rm -r command, the folder and its contents are removed from
the working directory and staged for deletion. To complete the process, commit the
changes:
git commit -m "Deleted 'examples’ folder"

Replace the commit message with an appropriate message for your changes.
Remember that once you've committed the changes, they become a part of your Git
history, and you won't be able to recover the deleted files or folders easily. So, use
these commands with caution and make sure you have a backup if needed.

g
Points to Remember

e Gitstatusis a useful command in Git that provides information about the current state

of the repository and helps users track changes to files. There are operations related
to ‘git status’ including: View new untracked files, View modified files, View deleted
files.

e The “git add’ operation in Git is a fundamental command used to stage changes in a
repository, preparing them to be included in the next commit. There are operations
related to the "git add’ command including: Stage all files, Stage a file, Stage a folder.

e To add file changes to the Git staging area, follow these steps:

1. Check the Status
2. Add Changes
3. Stage All Changes

85|Version control — Trainee Manual

4. Review Staged Changes

5. Commit Staged Changes
@Eﬂ
You are a software developer working on a coding project, who utilize Git for version control.
While adding a new feature to the project, you need to create a file called "feature.html" and
made modifications to an existing file called "main.html". To be sure that the previous tasks
are performed well you can also review the changes before committing them. Using Git, check
the status of your project with "git status" and identify the "feature.html" file as untracked,

and "main.html" as modified. Use “git diff main.html" to view the differences in "main.html".
During this process, you discover an unnecessary file and deleted it.

Application of learning 2.1.

86|Version control — Trainee Manual

— - — e —E R ——EE e —
| Indicative content 2.2: Commit File changes to git local repository
" and manage branch

Duration: 10hrs

%rﬁ e Theoretical Activity 2.2.1: Introduction of commit file change to git
f’f local repository

_Thmns talo
g Tasks:

1. In small groups, you are requested to answer the following questions related to the

commit file change to git:
I. What do you understand about commit message?
II. What are the best practices for creating a commit message, operations related
to git log?

[ll. Can you explain the operations involved in the "git commit’ command in Git?

Participate in group formulation
3. Present your findings to your classmates and trainer

For more clarification, read the key readings 2.2.1. In addition, ask questions where
necessary.

g
p Key readings 2.1.1.: Description of commit file change
1. Definition of Commit message
In Git, a commit message is a brief description that explains the changes made in a
particular commit. When you make changes to files in your Git repository and are ready to
save those changes as a new version, you create a commit. Each commit represents a
snapshot of the changes you've made to the files at a specific point in time.

The commit message serves to document the purpose and context of the changes made in
that commit. It helps other developers (including your future self) to understand the
reasons for the changes and the intention behind them. Writing clear and descriptive
commit messages is a best practice in software development, as it promotes collaboration
and makes it easier to navigate through the project history.
A typical commit message includes the following components:
1. Summary line: A concise, one-line description of the changes made in the commit.
This summary line is usually limited to around 50 characters and ends with a period.
2. Description (optional): A more detailed explanation of the changes. This part is not
mandatory, but it can be helpful for providing additional context and details about
the commit.

Here's an example of a commit message:
Fix issue with login validation

87 |Version control — Trainee Manual

The login form was not properly validating user credentials, leading to an error message
loop. This commit fixes the issue by adding proper validation checks for username and
password inputs.

In this example, the summary line is "Fix issue with login validation," which briefly describes
the purpose of the commit. The description provides more details about the problem and
the solution.

When you create a commit using the git commit command, your text editor will open,
allowing you to write the commit message. Alternatively, you can use the -m flag to add
the commit message directly from the command line, like this:

git commit -m "Fix issue with login validation"

It's important to follow good commit message practices to maintain a clean and informative
version history for your projects. This will make it easier for you and your team to track
changes, identify the purpose of each commit, and manage the development process
effectively.

2. Best practice of creating a commit message

2.1 General Commit Message Guidelines

As a general rule, your messages should start with a single line that’s no more than about
50 characters and that describes the change set concisely, followed by a blank line,
followed by a more detailed explanation.

The same recommendations apply whether you are working on a GitHub commit, Gitlab
commit, or your local git server. Follow these guidelines when writing good commit
messages:

Keep it short (less than 150 characters total)

*

% Committing fewer changes at a time can help with this Use the imperative mood

RS

% This convention aligns with commit messages generated by commands like git
merge and git revert

7/
X

L)

Consistency enhances speed of reading comprehension

e

25

Tends to be more concise than the other moods
Add a title
% Less than 50 characters
% Use Title case (i.e. "Add Logging" instead of "add logging")
Add a body (optional)
% Less than 100 characters

RS

KD

% Explain WHAT the change is, but especially WHY the change was needed

KD

% Leave a blank line between the title and body

7

» Separate paragraphs in the body with blank lines

88|Version control — Trainee Manual

https://initialcommit.com/blog/Git-Commit-Message-Imperative-Mood
https://initialcommit.com/blog/git-merge
https://initialcommit.com/blog/git-merge

< Use a hyphen (-) for bullet points if needed
< Use hanging indents if needed

Bad commit examples:

a. Debugging

b. I've added a delete route to the accounts controller

Good commit Examples:

a. Enable Logging Globally

b. Add Account Delete Route

c. Needed for account deletion workflow on frontend

When you use the "git commit" command in Git, there are several operations that take
place. Here is an explanation of the operations applied on the "git commit" command:
Staging: Before you commit changes, you need to stage the modified files or new files to
be included in the commit.

Creating the commit: Once you have staged the changes, the "git commit" command
creates a new commit using the staged changes.

Recording the commit message: When you run "git commit," Git prompts you to provide a
commit message. This message describes the changes made in the commit and serves as
documentation for future reference.

Committing to the local repository: The commit is then saved to the local Git repository,
which is typically located in the git directory within your project.

Creating a new commit object: Git creates a new commit object that contains a reference
to the commit's parent or parents.

Advancing the branch pointer: After the commit is created, Git advances the pointer of the

current branch to the new commit, making the branch point to the latest commit.

The "git log" command in Git allows you to view the commit history of a repository. When
you run "git log," several operations are performed to display a list of commits in
chronological order. Here are the operations related to the "git log" command:

v Retrieving commit history
Displaying commit information
Showing commit references
Commit filtering and formatting

AN NN

Paging and navigation

89 |Version control — Trainee Manual

o
s Practical Activity 2.2.2 : Committing File changes to git local

3 repository and manage branches

_mmzﬂooﬂ
: Tasks:

1: Read key reading 2.2.2 and ask clarification where necessary

2: Referring to the previous theoretical activity (2.2.1) you are requested to go to the
computer lab to commit file changes to git local repository and manage branches. This task
should be done individually.

3: Apply safety precautions.

4: Present out the steps to commit file changes to git local repository and manage branches.
5: Referring to the steps provided on task 3, commit file changes to git local repository and
manage branches.

6: Present your work to the trainer and whole class.

o
“('0,
Key readings 2.2.1: Operation on git commit command
1. Commit file change
Here are the steps to commit file changes to a Git local repository:

1.Check Status: Before committing changes, it's a good practice to review the status
of your repository using the command:

This will show you which files have been modified, added, or deleted.

2.Stage Changes: Use the "git add" command to stage the changes you want to
commit. You can either stage specific files or stage all changes. For example:

® To stage a specific file:

git filename

e To stage all changes:

90| Version control — Trainee Manual

3.Verify Staging: Confirm that the changes you want to commit are staged correctly
by checking the status again:

Staged changes will appear in green.

4.Commit Changes: Once you've staged the desired changes, commit them to the
local repository along with a descriptive commit message using the "git commit"
command:

-m "Your commit message here"

Replace "Your commit message here" with a concise description of the changes
you're committing

5.Verify Commit: After committing the changes, you can verify that they have been
successfully committed by reviewing the commit history:

n_gn

This will display a list of commits, including the one you just made. Press "q" to exit
the log.

2. Operations on git commit command
Commit a file

It is used to record the changes in the repository. It is the next command after the git
add. Every commit contains the index data and the commit message. Every commit
forms a parent-child relationship. When we add a file in Git, it will take place in the
staging area. A commit command is used to fetch updates from the staging area to
the repository.

The staging and committing are co-related to each other. Staging allows us to
continue in making changes to the repository, and when we want to share these
changes to the version control system, committing allows us to record these changes.

Commits are the snapshots of the project. Every commit is recorded in the master
branch of the repository. We can recall the commits or revert it to the older version.
Two different commits will never overwrite because each commit has its own
commit-id. This commit-id is a cryptographic number created by SHA (Secure Hash

91| Version control — Trainee Manual

https://www.javatpoint.com/git-add
https://www.javatpoint.com/git-add

Algorithm) algorithm.
Let's see the different kinds of commits.
To apply a commit file operation in Git, you typically follow these steps:

1. Stage your changes: Before committing your changes, you need to stage the files you
want to include in the commit. You can use the git add command to stage specific
files or directories.

2. Review the changes: Once you've staged the changes, you can use the git status
command to review the modifications you've made. This command shows the staged
changes and any untracked files.

3. Create a commit: After reviewing the changes, you're ready to create a commit. Use
the git commit command to create a new commit with a commit message describing
the changes.

4. Repeat the process: If you have additional changes to include in the commit, you can
repeat steps 1-3. Stage the new changes using git add, review the modifications with
git status, and create a new commit with git commit.

5. Push or share your commits: Once you've finished creating your commits, you can
push them to a remote repository to share them with others or keep a backup. Use
the git push command to push your commits to a remote branch.

3. The git commit command

The commit command will commit the changes and generate a commit-id. The
commit command without any argument will open the default text editor and ask for
the commit message. We can specify our commit message in this text editor. It will
run as follows:

1. S git commit

The above command will prompt a default editor and ask for a commit message. We
have made a change to newfilel.txt and want it to commit it. It can be done as
follows:

Consider the below output:

~/Desktop/NewDirectory (master)
% git commit
[master e3107d8] Update Newfilel

2 files changed, 1 ins jon(+)
delete mode 100644 [index.jsp

As we run the command, it will prompt a default text editor and ask for a commit

92| Version control — Trainee Manual

message. The text editor will look like as follows:

Update Mewfilel

Please enter the commit message for your changes. Lines starting
with "#" will be ignored, and an empty messzage aborts the commit.
k3

0On branch

erted:

£
md
k3 del s
B modified:
e

Press the Esc key and after that 'l' for insert mode. Type a commit message whatever
you want. Press Esc after that ':wq' to save and exit from the editor. Hence, we have
successfully made a commit.

We can check the commit by git log command. Consider the below output:

top/NewDirectory (master)
$ git Tog
commit e3 ¥ (74a87b5 (HEAD -> master)
C Oz

26 17:59:44

We can see in the above output that log option is displaying commit-id, author detail,
date and time, and the commit message.

Git commit -a

The commit command also provides -a option to specify some commits. It is used to
commit the snapshots of all changes. This option only considers already added files
in Git. It will not commit the newly created files.

Consider below scenario:

We have made some updates to our already staged file newfile3 and create a file
newfiled.txt. Check the status of the repository and run the commit command as
follows:

1. S gitcommit-a

Consider the output:

93| Version control — Trainee Manual

~/Desktop/NewDirectory
$ touch newfiled.txt

~/Desktop/NewDirectory

§ git status
aly branfh
commit:
" to update at will be committed)
card changes in working directory

<file=..." to include in what will be committed)

no changes added to commit (use "git add” and/or "git commit -a")
top/NewDirectory (master)

4] updated newfile3d
. 1 insertion(+)

The above command will prompt our default text editor and ask for the commit
message. Type a commit message, and then save and exit from the editor. This
process will only commit the already added files. It will not commit the files that have
not been staged. Consider the below output:

§ git status
on branch master

add =file=..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add” to

As we can see in the above output, the newfile4.txt has not been committed.
Git commit -m

The -m option of commit command lets you to write the commit message on the
command line. This command will not prompt the text editor. It will run as follows:

$ git commit -m "Commit message."

The above command will make a commit with the given commit message. Consider
the below output:

94| Version control — Trainee Manual

op/NewDirectory (n

e changed insertions ,
mode 100644 newfiled. txt

In the above output, a newfile4.txt is committed to our repository with a commit
message.

We can also use the -am option for already staged files. This command will
immediately make a commit for already staged files with a commit message. It will
run as follows:

$ git commit -am "Commit message."
4. Edit commit message
Git Commit Amend (Change commit message)

The git commit --amend command is commonly used to make changes to the most
recent commit in Git. It allows you to modify the commit message, add more changes,
or even remove some changes that were accidentally included. Here are some
examples of how git commit --amend can be applied:

1. Changing the commit message:

Suppose you made a commit with a message containing a typo, and you want to
correct it. You can use git commit --amend to change the commit message:

Make some changes to the code

git add

git commit -m "Fixe a bug in the login process"

Oops! Realized the typo in the commit message

git commit --amend -m "Fixed a bug in the login process"
Adding forgotten changes to the previous commit:

If you forgot to include some changes in the last commit, you can use git commit --
amend to add those changes to the previous commit:

Make some changes to the code
git add.

git commit -m "Added new feature A"

95| Version control — Trainee Manual

Realized that you forgot to add changes to feature B

Add the changes to the staging area

git add path/to/featureB.py

Amend the previous commit to include the changes to feature B
git commit --amend --no-edit

Splitting a commit into multiple commits:

Suppose you made several unrelated changes in a single commit and want to split it
into multiple smaller commits. You can use git commit --amend to do that
interactively:

Make several changes

git add changel.py

git add change2.py

git add change3.py

Commit all changes together

git commit -m "Added changes 1, 2, and 3"

Realized that the changes should be separate commits
Amend the commit and interactively split the changes
git add changel.py

git commit --amend

Stage and commit changes for change2.py

git add change2.py

git commit -m "Added change 2"

Stage and commit changes for change3.py

git add change3.py

git commit -m "Added change 3"

Please note that using git commit --amend to modify commits that have already been

96| Version control — Trainee Manual

pushed to a remote repository can cause issues with the history and should be used
with caution. It's best to avoid amending commits that have already been shared with
others.

5. Operation on git log command

We can use git log command in order to list, filter, view commit history in different
ways. we will examine git log command usage in detail with examples.

To see simplified list of commit

The git log command is used to view the commit history in a Git repository. By default,
it displays a detailed list of commits, including information such as commit hash,
author, date, and commit message. Display a simplified list of commits with essential
information:

1. Show a simplified list of commits with the author and date

2. View a simplified list of the last five commits

3. Display a simplified list of commits for a specific branch
To see a list of commits with more detail

To see a list of Git commits with more detailed information, you can use the git log
command without any additional options. By default, git log provides a detailed view
of the commit history.

List Commit History

We will start with git log command without any parameter. This will list all commit
history in an interactive terminal where we can see and navigate.

S git log

97| Version control — Trainee Manual

commit 4 2 3 B 5 (HEAD -> newversion,
Author: fyodor g 1-7df4-8310-8962-fdc924857419>
Date: Sun Dec 9 02:00:55 2018 +0000

Update copyright year for Mcat and Ncat Guide

commit ¢
Author: dmille
Date: Sun Dec 2
Changelog for #1227
commit 1ba@ll
Author: dmille
Date: Sun Dec 2 B5:48:27 2018 +0000Q
Add a length check for certificate parsing. Fixes #1399

commit b

Author: dmiller
DEN=H Thu Nov 29 20:27:05

Warn for raw scan options without needed privileges
Comir J_l_ D
Author:
Date: Thu Nov 29 17:42:89 2018 +B0OO
Fix a bug in the fix. https://github.com/nmap/nmap/commit/ebf083cbObfc239a000aear7e
commit (B] ad
Author: c er eBaBed71-7df4-0310-8962-fdc924857419=>
Date: Thu Nov 29 17:42:09 2018 +0000

Avoid a crash (double-free) when SSH connection fails

5.1 List Commit History
We can see from output that following information about the commit provided.
e Commit’ number which is a unique hash identifies the commit
e “Author’ the developer who commit. Also email information is provided
e 'Date’ specifies when the commit occurred
e Thelast line provides note and information about the commit.
5.2 List One Commit Per Line

If we need to only list unique part of the commit id with the note provided by author,
we can use --oneline option which will just print single line about each commit.

S git log --oneline

98| Version control — Trainee Manual

HEAD -> newversion, , , master) Update copyright y
Changelog for #1227
Add a length check for certificate parsing. Fixes #1399
Warn for raw scan options without needed privileges
Fix a bug in the fix. https://github.com/nmap/nmap/commit/ebf883cbBbfc239ab
Avoid a crash (double-free) when SSH connection fails
d Renamed variable to better reflect its nature
Variable is ssl is not a flag but a protocol string. Fixes #1400
Require 'options' to -s* and -P* to be joined to them, e.g. not '-s SUV'
Fix a crash in http scripts when following redirects
’ Replace a config-time check with a ifndef that also works on Windows.
Don't fatal() on iflist if npcap isn't found
Avoid crashing when PATH contains non-ascii/futf-8. Decode if possible
Fix crash when using dir: operator
Change for-loop initial declarations not allowed in (89
Copy zlib DLL during staging. Avoid building nmap-update
Fall back to TCP connect ping on Windows without pcap
Avoid compiler warning about signedness mismatch on VS2013.
Fix Windows build for zlib update: use DLL instead of static
Fixes for Windows build from Lua header rearrangements
Restore unconfigured zconf.h, needed on Wir 5.
Use iterative solution instead of tail recursion to avoid stack problems wh
Reorder some probes to better match RDP and TLS
Use standard way of including nbase.h
Make functions static where possible
Fix wrong libra
Move TerminalServerCookie probe below more-likely TerminalServer probe. Pro
Process 274 service fingerprint submissions

List One Commit Per Line
5.3 Print Statistics

We may need to print information about the commit in details. We will use --
stat option.

S git log --stat

99 |Version control — Trainee Manual

commit / 1 & / & (HEAD -> newversion,
Author: fy e ed71-7df4-0310-8962 - fdc924857419>
Date: Sun Dec 9 02:00:55 2018 +000Q

Update copyright year for Ncat and Ncat Guide

ncat/docs/ncat.xml 4

|
1 file changed, 2 insertions(+), 2 deletions(-)

commit 6dd26et 7 2ad19 2
Author: dmiller <dmillergeBa8ed71-7 -0310-8962 - fdc924857419>
Date: Sun Dec 2 05:54:58 2018 +0000

Changelog for #1227

CHANGELOG | 3
1 file changed, 3 insertions(+)

commit 1lba@11¢ f 2
Author: dmille illerge } -p310-8962 - fdc924857419=
Date:

Add a length check for certificate parsing. Fixes #1399

nselib/tls.lua | 8
1 file changed, 7 insertions(+), 1 deletion(-)

commit blefd s 0 1db61f
Author: dmille illergefa8ed -0 -8962 - fdc924857419=

Date: Thu Nov 29 20:27:05 2018 +0000
Warn for raw scan options without needed privileges

nmap.cc | 23
1 file changed, 22 insertions(+), 1 deletion(-)

5.4 Print Statistics

We can see from output that extra information like changed file, changed file count,
number of lines added, number of lines deleted.

Print Patch or Diff Information

If we are interested with the code diff information we need to use -p option. -
p option can be used to print path or diff of the files for the commits.

S gitlog -p

100 | Version control — Trainee Manual

Date: Sun Dec 2 05:48:27 2018 +0000

Add a length check for certificate parsing. Fixes #1399

diff --git a/nselib/tls.lua b/nselib/tls.lua
index e57a87fle..e7e7bl80b 100644

--- as/nselib/tls.lua
+++ b/nselib/tls.lua

handshake parse = {
end

local b = {certificates = {}}
while j = cert end do

cert, j = unpack("=s3", buffer, j)
-- parse these with sslcert.parse ssl certificate
table.insert(b["certificates"], cer

commit blefd? 64T301db61T
Author: dmiller i1 ler@ebade - -B 8962- fdc924857419>
Date: Thu Nov 29 20:27:05 20818 +0000

Warn for raw scan options without needed privileges

diff --git a/nmap.cc b/nmap.cc
index fd4574701..2b351511a 100644
--- a/nmap.cc
+++ b/nmap.cc
public:

this-=advanced

this->af

this-=>decoys

false;
AF UNSPEC;
false;

5.5 Print Patch or Diff Information

We see from screenshot that added and removed code is shown clearly. Added code
color is green and removed code is red. Also added code lines start with +plus and
removed code lines starts with - minus.

Show/Print Specific Commit In Detail

If we need to look specific commit we need to use git show command. We will also
provide the commit id or number we can to print.

S git show b1efd742499b00eef970feeef84dc64f301db61f

101 |Version control — Trainee Manual

commit b C fQ7 f301db6 11
~ dmil (B310-8962-fdc924857419>
Date: Thu Nov 29 20:27:

Warn for raw scan options without needed privileges

diff --git a/nmap.cc b/nmap.cc
index fd4574701..2b351511a 100644
=== a/nmap.cc
b/nmap. cc
public:
5-=advanced = false;
AF UNSPEC;
= false;

-specified timing parameters.
public:
double pre scripttimeout;
#endif
char #*machinefilename, *kiddiefilename, *normalfilename, *xmlfilename;

char *exclude spec, *exclude file;
char *spoofSource, *decoy arguments;
const char *spoofmac;
void parse options(int argc, char **argv) {
// If they only want open, don't spend extra time (potentially) distinguist
o.defeat rst ratelimit = true;
} else if (strcmp(long options[option index].name, "scanflags") == 0) {

o.scanflags = parse
if (o.scanflags < 0)
fatal("--scanflags option must be a number between & and 255 (inclusive)
void parse options(int argc, char **argv) {

i b Tl

scanflags (optarg);
{

5.6 Print Specific Commit In Detail
We can see that specific commit provides diff information in detail.
Show/Print Specific Commit Stats

If we can’t to just print specific commit stat and information we can provide --
stat option to the git show command.

S git show --stat blefd742499b00eef970feeef84dc64f301db61f

% git show - ef 2499b80eef970fecef84dc64T301dbe 1T
commit b1f

Author: dmille miller@efaBed?1-7 -0310-8962-fdc924857419=>
Date: Thu Nov 29 20:27:85 2018 +0068

Warn for raw scan options without needed privileges

nmap.cc | 23
1 file changed, 22 insertions(+), 1 deletion(-)

Show/Print Specific Commit Stats

102 | Version control — Trainee Manual

5.7 Group Commits By Author

If we want to inspect the commits according to the author name we need to group
commits by author. We can use shortlog command in order to list commits notes
grouped by author name.

S git shortlog

abhishek (14):
Closes #366
Removes the bug so as to compare cmd fixes #381
Adds Pong response, closes #383
Updates the Nsock examples, closes #395
implements map data structure to speed up search in process result() of nmap
Falls back to "getnameinfo" for truncated replies in reverse DNS resolver. C
Adds zero-byte option(-z) for Mcat. Fixes #22 and #225
Adds test for -z option in ncat, closes #444
Add little documentation for DNS resolution of truncated packets. Closes #46
Add support for decoys in IPv6 closes #433 and fixes #98
Fix timeout problem for http-slowloris
Add --script-timeout option to limit the script's runtime. Closes #3308 and F
Documentation for script-timecut. Closes #385
Add CHANGELOG entry for --script-timeout.

aca (37):
Small patch to rdp-vuln-ms12-0820.nse
Rewrite of ftp-brute.nse script
Fixed a typo in the description.
Rewrote mysql-brute to use brute library
Commited rmi-vuln-classloader script
Commited http-frontpage-login to main branch
Merged dns-nsec3-enum to trunk
removed .exe, added info to Changelog
added Daniel's patch
Wrong @usage descriptions fix
Added missing library requirements to dns-nsec3-enum
Few variables were not declared as locals. This fixes it.
Added pcanywhere-brute script
Typo. ..
Added few aditional credentials to http-default-accounts fingerprints
Added metasploit-msgrpc-brute to trunk
Merged metasploit-info from my dev branch
Brute and unpwdb lib improvements that allow more flexible iterator specific
Added a patch by Patrick. A cleaner way to deal with varargs.
Ooops. Forgot the returns

Group Commits By Author
5.8 Show Author Commit Numbers

If we are interested with the authors commit numbers we need to provide -s options
to the shortlog command.This will provides commit numbers for each authors.

S git shortlog -s

103 | Version control — Trainee Manual

% git shortlog -s
14 abhishek
37 aca

alex
andrew
batrick
bmenrigh
claude
claudiu
colin
d33tah
daniel
david
devin
diman
djalal
dmiller
doug
drazen
ejlbell
evangel
fyodor
gio
gorjan
TEDR
henri
ithilgore
jah

jay
jiayi
joao
josh
jurand
kirubakaran
kris
kroosec
luis

5.9 Show Author Commit Numbers
Sort Authors By Commit Numbers

We can improve previous example and sort authors by their commit numbers. We
will add -n too the previous example where final command will be like below.

S git shortlog -n -s

104 | Version control — Trainee Manual

$ git shortlog -n -s
3783 david
2247 dmiller
2114 fyodor

475 patrik
348 kris
336 batrick
321 henri
227 nnposter
193 paulino
192 ron
148 tomsellers
130 djalal
125 luis
98 jah
88 d33tah
86 doug
78 kroosec
58 sophron
56 gorjan
52 robert
51 jay
46 gyani
45 sean
44 shinnok
43 wvincent
bmenrigh
gio
aca
joao
michael
perdo
pgpickering
sven

Sort Authors By Commit Numbers
5.10 Pretty Print

We can also customize the log output according to our needs. We can use --
pretty option and some parameters to print different log output. In this example we
will use %cn for author name %h hash value of commit and %cd for commit time.

S git log --pretty="%cn committed %h on %cd"

105|Version control — Trainee Manual

fyodor committed 434de7368f on Sun Dec 9 02:00:55 2018 +0060
65
65

:54:58 2018 +0000

:48:27 2018 +0000

20:27:05 2018 +00e0
17:42:09 2018 +0000
:09 2018 +0000
155 2018 +0000
124 2018 +0000
:43 2018 +0000
:16 2018 +0000
:08 2018 +0000
110 2018 +0000
132 2018 +0000
:46 2018 +0000
132 2018 +0000

- committed 6d420e82b on Sun Dec
- committed 1ba®l11937 on Sun Dec
- committed blefd7424 on Thu MNov
- committed b642dcl29 on Thu Mov
- committed 350bbedS9 on Thu MNov
nnpoatLr committed f893372dd on Tue Nov 27 LB
nnposter committed f@ddlb8c8 on Tue Nov 27 19:
dmiller committed 3a248371f on Tue Mov 27 18:
dmiller committed ebf883cb® on Tue Mov 27 B84:
dmiller committed f8004b792 on Wed Nov 21 06:
dmiller committed 33f16dd87 on Wed Mov 21 83:
er committed bff7dcad4 on Thu Mov 15 16:
- committed adfc39f4f on Thu Mov 15 B85:
- committed 38b843558 on Tue Nov 13 17:

- committed 8498cad95 on Thu MNov 15:30:15 2018 +0000

- committed 8605dea33 on Thu Mov 15:28:13 2018 +0000

- committed 66eee935a on Thu Mov 14:52:32 2018 +0000

- committed 89al71458 on Thu MNov 8 14:51:33 2018 +0008

- committed 5c83c3d2a on Thu Mov 8 04:55:29 2018 +0000

- committed 8b2f8dbad on Thu Mov 4:35:52 2018 +0800

- committed 1345eb247 on Thu Mov 4:25:12 2018 +8000

- committed 4628cc3df on Tue MNov (B7:04 +0000

- committed 7da763d27 on Tue MNov :07:83 +0000

- committed 7ea@aBc9a on Tue MNov :07:82 +8008

- committed 118d9b7ad on Tue MNov :07:81 +B008

- committed 70be64dS9 on Mon MNov 112:12 +0000

- committed 959172282 on Mon MNov :08:58 +0000

- committed 5a34fd3d8 on Mon Mov :07:42 +8008

- committed 824f9dcb2? on Thu Mov :35: +8008

- committed 27887aadb on Thu MNov :34: +0000

- committed c223ec5c¢3 on Thu MNov 134 +0000
- committed 8f916ec3b on Wed Oct : 018 +0080
- committed 625884e7d on Wed Oct : 018 +0080

Pd B B B D
wwo
£ B

o g

w

=

“-.I

R -l'—-
I\JI—'I\J
D‘.'l-l':-

£ b
P L L L L L

[oo [e I P I e T S

Pretty Print
5.11 Filter By Author

In some cases we may need to filter commits according to the author name. We will
use --author and provide the author name to filter and show only given author. In
this example we will filter author named dmiller.

S git log --author="dmiller"

106 | Version control — Trainee Manual

commit 6d
Author: dmill miller@efa8ed71-7df4-0310- q95¢ fdc924857419=>
Date: Sun Dec 2 05:54:58 2018 +0000

Changelog for #1227
commit lba@ll
Author: dmille @
Date: Sun Dec 2 05:48:27 2018 +0000

Add a length check for certificate parsing. Fixes #1399

commit 61T
defalbe ?l 7df4-8318-8962-fdc924857419=
ate: Thu NDU 29 20:27:05 2018 +0000

Warn for raw scan options without needed privileges
commit b6 = 0eb
Author: dmiller =c d ec 4-8310- ﬂ96¢ fdc924857419=
Date: Thu Nov 29 17:42:09 2018 +0000

Fix a bug in the fix. https://github.com/nmap/nmap/commit/ebf083cbObfc239a000aea?
commit de 9847 ad
Author: dmiller =dmille ec 0310-8962-fdc924857419=
ate: Thu Nov 29 17:42:09 2018 +0000

Avoid a crash (double-free) when SSH connection fails
commit 3a f 13
Author: dmiller < e e (0310-8962-fdc924857419=
Date: Tue Nov 27 18:12:43 2018 +0000

Require 'options' to -s* and -P* to be joined to them, e.q.
commit et fe
Author: dmiller <dmillerngefa3e - 0310-8962-1fdc924857419=
Date: Tue Nov 27 04:43:16 2018 +0000

Fix a crash in http scripts when following redirects

Filter By Author
5.12 Filter By Number

If we want to list and print specified number of commit we need to use - with the
number we want to print. In this example we will print last 5 commit.

S git log -5 --oneline

-5 --oneline
(HEAD -> newversion, ' , master) Update copyright yean
» Changelog for #1227

! Add a length check for certificate parsing. Fixes #1399
Warn for raw scan options without needed privileges
Fix a bug in the fix. https://github.com/rnmap/nmap/commit/ebf@83cbBbfc239abB0g

Filter By Number

107 |Version control — Trainee Manual

5.13 Filter By Date

We can also filter according to date. We will provide the date we want to start listing.
We will use --after option and provide the date. Date will be MM-DD-YYYY format. In
this example we will list commits those created after 1 December 2018.

S git log --after="12-1-2018"

% git log --after="12-1-2018"
i g i 04d31635 (HEAD -> newversion,
y - =<fyodor@eda8ed71-7 -B310-8962-fdc924857419=
Sun Dec 9 02:00:55 2018 +0000

Update copyright year for Mcat and Ncat Guide

commit 6 sl

Author: dmille 1illé 71-

Date: Sun Dec 2 05:54: 18 +0008

Changelog for #1227

commit lba®l
Author: dmiller <dmille
Date: Sun Dec 2 05:48:

Add a length check for certificate parsing. Fixes #1399
Filter By Date

We can also use --before where commits created before specified date will be
printed.

5.14 Filter By Message

We can print or list logs by filtering according to the message. We will use --
grep option and provide the filter term. We will filter for message http in this
example.

S git log --grep="http"

108 | Version control — Trainee Manual

commit C b
Author: 1 1ler@edaBed71-7 -p318-8962-fdc924857419=
Date: Thu Nov 29 17:42:09 2018 +Q0080

« a bug in the fix. https://github.com/nmap/nmap/commit/ebf083cbbbfc239a000aea7 7

(ad2f0leaffe
miller 1iller@efaBed71-7df4-0310-8962- fdc924857419>

Tue Nov 27 84:43:16 2018 +0000

a crash in http scripts when following redirects

miller (
Wed Oct 31 14:91:34 2018 +0080

a radix tree (trie) to match exclude addre

Current exclusions list from --excludefile takes linear time to match
against. Using a trie structure, we can do matching in O(log n) time,
with a hard maximum of 32 comparisons for IPv4 and 128 comparisons for
IPv6. Each node of the trie represents an address prefix that all
subsequent nodes share; matching stops when one is matched exactly or
when the candidate address does not match any prefix of the addresses in
the trie.

For now, only numeric addresses without netmask are supported. We plan
to extend this to addresses with netmasks, including resolved names.
Storing IPv4 ranges and wildcards in this structure would be
prohibitively complex, so the existing linear match method will be used
for those. It is unlikely that any users are using large exclusion lists
of these types of specifications, so performance impact is small.

Potential future features could use the trie structure to implement
custom routing or scope-limiting.

This was a todo list item based on this report:
https://seclists.org/nmap-dev/2012/q4/420

commit
Author:
Date: Fri Oct 19 95:99.45 4@18 +BBBB

Adds http-sap-netweaver-leak to detect SAP instances with the Knowledge Management
commit

Author:
Date: Wed Oct l? 20:21: US ¢qu +DUUU

Filter By Message
5.15 Filter By File

If we are looking for specific file change during commit we can filter for file. We will
use -- and provide file names which is expected to be in commit change. In this
example we will look file ip.c which is expected to be committed.

S git log -- ip.c

Filter By Content

109 |Version control — Trainee Manual

Also we can filter commits according to the commit content. This will be very useful
if we want to search and filter for specific change. We will use -S option and provide
filter term. In this example we will filter for raw_scan. Keep in mind that this may take
some time because it will search in all commits which is not indexed for fast search.

S git log -S"raw_scan"

% git log
commit blefc
Author: dmiller

Date: Thu Nov 29 20:27:05 2018 +0000

Warn for raw scan options without needed privileges

Filter By Content
5.16 Filter By Commit Id/Hash Range

Commits have their own hash ids. If we want to list range of Commits we can provide
the start and end commit id where commits between them will be listed.

S git log b642dc129c4d349a849fb0e..1ba01193725f4c

$ git log b642d 129c4d349a849fb0e 1ba01193725f4c

commit 1ba0119372514c83bTC 4cd5 bc91c626152

Author: dmiller <dm111er@e0a8ed7l 7df4-0310-8962-fdc924857419>
Date: Sun Dec 2 05:48:27 2018 +0000

Add a length check for certificate parsing. Fixes #1399
ommit bleTd742499b00eeT970Te 84dcb47301db61f

Author: dmiller <dm111er@e0a8ed71 7df4-0310-8962- fdc924857419>
Date: Thu Nov 29 20:27:05 2018 +0000

Warn for raw scan options without needed privileges

Filter By Commit Id/Hash Range
5.17 List Only Merges

By default merge commits are printed and listed. But if the default behavior is change
with config and we want to list and print merge commits we can use --merge option
to list merge commits too.

$ git log -merge

List No Merges

By default merges commits are printed and listed with git log command. If we do not
want to list or print then for all operations we can use --no-merges option which will

110 | Version control — Trainee Manual

do not show merge commits.
S git log --no-merge

6. Manage branches

6.1 Git Branch

A branch is a version of the repository that diverges from the main working project.
It is a feature available in most modern version control systems. A Git project can
have more than one branch. These branches are a pointer to a snapshot of your
changes. When you want to add a new feature or fix a bug, you spawn a new branch
to summarize your changes. So, it is complex to merge the unstable code with the
main code base and also facilitates you to clean up your future history before merging
with the main branch.

Branch 1
/1 Master
> > » —>
Branch 2

Figure 11: Git Master Branch

The master branch is a default branch in Git. It is instantiated when first commit made
on the project. When you make the first commit, you're given a master branch to the
starting commit point. When you start making a commit, then master branch pointer
automatically moves forward. A repository can have only one master branch.

Master branch is the branch in which all the changes eventually get merged back. It
can be called as an official working version of your project.

6.2 Operations on Branches

We can perform various operations on Git branches. The git branch command allows
you to create, list, rename and delete branches. Many operations on branches are

111 | Version control — Trainee Manual

applied by git checkout and git merge command. So, the git branch is tightly
integrated with the git checkout and git merge commands.

The Operations that can be performed on a branch:
1.Create Branch

You can create a new branch with the help of the git branch command. This
command will be used as:

Syntax:
1. Sgit branch <branch name>
Output:

~/Desktop/GitExample2 (master)

$ git branch B1

This command will create the branch B1 locally in Git directory.
2.List Branch

You can List all of the available branches in your repository by using the following
command.

Either we can use git branch - list or git branch command to list the available
branches in the repository.

Syntax:
1. Sgitbranch --list or $ git branch
Output:

~/Desktop/GitExample?2
$ git branch
B1
branch3

~/Desktop,/GitExample?

¥ git branch --Tlist
B1
branch3

Here, both commands are listing the available branches in the repository. The symbol
* is representing currently active branch.

3.Delete Branch

You can delete the specified branch. It is a safe operation. In this command, Git

112 | Version control — Trainee Manual

prevents you from deleting the branch if it has unmerged changes. Below is the
command to do this.

Syntax:
1. S git branch -d<branch name>

Output:

~/Desktop/GitExample?

$ git branch -d B1
Deleted branch Bl (was 554al22).

This command will delete the existing branch B1 from the repository.

The git branch d command can be used in two formats. Another format of this
command is git branch D. The 'git branch D' command is used to delete the specified
branch.

1. S git branch -D <branch name>
Delete a Remote Branch

You can delete a remote branch from Git desktop application. Below command is
used to delete a remote branch:

Syntax:
1. S git push origin -delete <branch name>

Output:

~/Desktop/GitExample2 (master)
$ git push origin --delete branch?2
To https://github.com/ImDwivedil/GitExample?

- [de]eteﬂj branch?

~/Desktop/GitExample2 (master)

As you can see in the above output, the remote branch named branch2 from my
GitHub account is deleted.

4.Switch Branch

Git allows you to switch between the branches without making a commit. You can
switch between two branches with the git checkout command. To switch between
the branches, below command is used:

1. S git checkout<branch name>

113 | Version control — Trainee Manual

Switch from master Branch

You can switch from master to any other branch available on your repository without
making any commit.

Syntax:
1. S git checkout <branch name>

Output:

~/Desktop/GitExample2

% git checkout branch4
Switched to branch "branch4®

As you can see in the output, branches are switched from master to branch4 without
making any commit.

Switch to master branch

You can switch to the master branch from any other branch with the help of below
command.

Syntax:
1. $git branch -m master

Output:

~/Desktop/GitExample?
master
to branch 'master’
ch is 3 d of 'origin/master’ by 1 commit.

”g{t pﬂﬁh” to publish your local commits)

~/Desktop,/GitExample2

As you can see in the above output, branches are switched from branchl to
master without making any commit.

5.Rename Branch

We can rename the branch with the help of the git branch command. To rename a
branch, use the below command:

Syntax:
1. $ git branch -m <old branch name><new branch name>

Output:

114 | Version control — Trainee Manual

op/GitExample2 (master)
§ git branch -m

op/GitExample2 (master)

§ git branch

renamedel

~/De GitExample2 (master)

As you can see in the above output, branch4 renamed as renamedB1.
6.Merge Branches

Git allows you to merge the other branch with the currently active branch. You can
merge two branches with the help of git merge command. Below command is used
to merge the branches:

Syntax:
1. $ git merge <branch name>

Output:

vesktop,/GitExample?
., git merge renamedsl

~/Desktop/GitExample2

From the above output, you can see that the
master branch merged with renamedB1. Since | have made no-commit before
merging, the output is showing as already up to date.

"

Jli

Points to Remember

® When using the ‘git commit’ command in Git, several operations are applied to creat
e a new commit in the repository. There are operations involved in the git commit’ ¢
ommand: Staging, Creating the commit, recording the commit message, committing
to the local repository, advancing the branch pointer.

o Here are the steps to commit file changes to a Git local repository:
1. Check Status

Stage Change

Verify Staging

Commit Changes

ik WS

Verify Commit

115|Version control — Trainee Manual

@Eﬂ

In a team project, Alice takes charge of creating a new branch called feature-xyz to develop a
new feature. She wants to manage her changes and review the commit history to ensure that

Application of learning 2.2.

her work is well-documented. Meanwhile, Bob, another team member, is working on a
separate feature on the feature-abc branch. Both they want to keep track of available
branches and switch between them. Alice periodically merges the latest changes from the
main branch, supervised by Sarah, the project lead, to ensure her branch remains up to date.
Together, Alice, Bob, and Sarah effectively collaborate using Git's powerful features to
manage their workflow, track progress, and maintain code integrity.

116 | Version control — Trainee Manual

=

B==
I

b R G e

Learning outcome 2 end assessment

Theoretical assessment

1. Match the Git branch operations with their corresponding commands:

Operation Command

Create branch a. git branch <branch-name>

List branch b. git branch

Delete local branch c. git branch -d <branch-name>

Delete remote branch d. git push origin --delete <branch-name>

Switch branch e. git checkout <branch-name>

Rename branch f. git branch -m <old-branch-name> <new-branch-name>

2. Complete the sentence:
l.

Il.
I,
V.
V.

VI.

VII.

Before staging a file, you must check all.......... files and.......... files.

To create a new branch in Git, you use the command git <branch-name>.
To list all branches in a Git repository, you use the command git

To delete a local branch, you use the command git <branch-name>.

To delete a remote branch, you use the command git origin --delete
<branch-name>.

To switch to a different branch, you use the command git <branch-
name>.

To rename a branch, you use the command git <old-branch-name> <new-

branch-name>.

3. How do | add files to a commit?

v

v
v
v

S git stage

S git commit
S git add

S git reset

4. How to save the current state of your code in git?

v
v
v
v

By validating the modifications staged with $ git commit

By adding all the changes and staging them with $ git stage
By adding all the changes and organizing them with S git add
By creating a new commit with $ git init

5. Read the Following statement and answer by true if correct or false otherwise

The git add command is crucial for staging changes, whether they involve new files or

modifications to existing ones, preparing them for the next commit. Once staged, the git

commit command is used to permanently save these changes to the local repository,

typically requiring a commit message for clarity. Additionally, the git commit command

117 |Version control — Trainee Manual

can be employed in the process of merging branches within Git, integrating changes from

different lines of development.

a. The git add command is used to stage changes for the next commit.

b. The gitadd command can be used to stage both new files and modifications to existing
files

c. The git commit command is used to permanently save changes to the local repository.
The git commit command requires a commit message to be provided.
The git commit command can be used to merge branches in Git.

Practical assessment

As the project's owner, Sarah wants to tweak a few features and has assigned her coworkers
assignments to do so. She begins by creating a new Git repository and a branch called
"feature_branch." By adding a new file with the name new_file.txt, Alex makes modifications
to the project files. Emily verifies that the repository is functioning properly, adds new_file.txt
to the staging area, and then commits the modifications with the message "Add new_file.txt."
David makes a switch to the main branch, merges the updates from "feature_branch," and
clears up any conflicts. Finally, Sarah, the repository's owner, removes the "feature_branch"
following a successful merge. They handle the project's branches, use the staging area
properly, and commit file changes to the local Git repository.

118 | Version control — Trainee Manual

o
&‘ References

LinuxHint. (n.d.). Git: List of new, modified, and deleted files. Retrieved from
https://linuxhint.com/git-list-of-new-modified-deleted-files/

Noble Desktop. (n.d.). How to stage and commit files in Git. Retrieved from
https://www.nobledesktop.com/learn/git/stage-commit-files

JavaTpoint. (n.d.). Git Reset. Retrieved from https://www.javatpoint.com/git-reset
JavaTpoint. (n.d.). Git rm. Retrieved from https://www.javatpoint.com/git-rm
CareerFoundry. (n.d.). Git commit command explained. Retrieved from
https://careerfoundry.com/en/blog/web-development/git-commit-command/
TutorialsPoint. (n.d.). Git Managing Branches. Retrieved from
https://www.tutorialspoint.com/git/git managing branches.htm

119 | Version control — Trainee Manual

https://linuxhint.com/git-list-of-new-modified-deleted-files/
https://www.nobledesktop.com/learn/git/stage-commit-files
https://www.javatpoint.com/git-reset
https://www.javatpoint.com/git-rm
https://careerfoundry.com/en/blog/web-development/git-commit-command/
https://www.tutorialspoint.com/git/git_managing_branches.htm

Pull

GitHub

add) Push
commit

120| Version control — Trainee Manual

Indicative contents

3.1 Fetch file from GitHub repository

3.2 Push files to remote branch

3.3 Merge branches on remote repository

Key Competencies for Learning Outcome 3: Ship codes.

Knowledge Skills Attitudes
e Description of pull and Fetching file from Being Practical
fetch commands GitHub repository oriented
operations Pulling files to GitHub Have Communication

e Description of pull
request

e Explanation of Tags used
on git push command
and operations

e Description of operation
on git rebase command

e Description of operation
on git merge.

repository

Pushing files to remote
branch

Creating pull request
Merging branches on
remote repository

Skills

Have critical thinking
Have Team work spirit
Being Problem solver

121 |Version control — Trainee Manual

Duration: 20hrs

&@

Learning outcome 2 objectives:

By the end of the learning outcome, the trainees will be able to:

1. Describe correctly pull, fetch, push and git rebase commands based on git project
2. Fetch correctly files in different operations based on git instructions

3. Push properly files to remote branch based on committed files

4. Merge effectively branches on remote repository based on pull request created.

-7. EA
MResources

Text editor (vs code)
Terminal (CMD,
Gitbash).

Equipment Tools Materials
e Computer Git e |nternet
GitHub e Electricity

122 |Version control — Trainee Manual

Indicative content 3.1: Fetch file from GitHub repository

Duration: 7 hrs

Theoretical Activity 3.1.1: Introduction of Fetching file from GitHub

ol
(ﬂrﬂ

R
P,

Things ta Do

i w Tasks:

1: In small groups, you are requested to answer the following questions related to the file
from GitHub:
i. i.What do you understand about the following term:
a. Fetch
b. Pull
ii. Canyou explain the operations involved in the “git fetch’ command in Git?

iii. Canyou explain the operations involved in the “git pull’ command in Git?
2: Participate in group formulation
3: Present your findings to your classmates and trainer
4: For more clarification, read the key readings 3.1.1. In addition, ask questions where
necessary.

g
& Key readings 3.1.1 : Description of Fetching file from GitHub
1. Git Fetch
Git "fetch" Downloads commits, objects and refs from another repository. It fetches
branches and tags from one or more repositories. It holds repositories along with the
objects that are necessary to complete their histories to keep updated remote-tracking
branches.

master

gilt fetch origin master

[I [
I | I
* + -

origin/master

master

Figure 12: Git fetch branches

123 | Version control — Trainee Manual

How git fetch works with remote branches

To better understand how git fetch works let us discuss how Git organizes and stores
commits. Behind the scenes, in the repository's ./.git/objects directory, Git stores all
commits, local and remote. Git keeps remote and local branch commits distinctly separate
through the use of branch refs. The refs for local branches are stored in
the ./.git/refs/heads/. Executing the git branch command will output a list of the local
branch refs. The following is an example of git branch output with some demo branch
names.

git branch main featurel debug2

Examining the contents of the /.git/refs/heads/ directory would reveal similar output.

Is ./.git/refs/heads/ main featurel debug?2

Remote branches are just like local branches, except they map to commits from somebody
else’s repository. Remote branches are prefixed by the remote they belong to so that you
don’t mix them up with local branches. Like local branches, Git also has refs for remote
branches. Remote branch refs live in the ./.git/refs/remotes/ directory. The next example
code snippet shows the branches you might see after fetching a remote repo conveniently
named remote-repo:

git branch -r

origin/main

origin/featurel

origin/debug?2

remote-repo/main

remote-repo/other-feature

This output displays the local branches we had previously examined but now displays them
prefixed with origin/. Additionally, we now see the remote branches prefixed with remote-
repo. You can check out a remote branch just like a local one, but this puts you in a
detached HEAD state (just like checking out an old commit). You can think of them as read-
only branches. To view your remote branches, simply pass the -rflag to the git
branch command.

You can inspect remote branches with the usual git checkout and git log commands. If you
approve the changes a remote branch contains, you can merge it into a local branch with a
normal git merge. So, unlike SVN, synchronizing your local repository with a remote
repository is actually a two-step process: fetch, then merge. The git pull command is a
convenient shortcut for this process.

The "git fetch"command

124 | Version control — Trainee Manual

The "git fetch" command is used to pull the updates from remote-tracking branches.
Additionally, we can get the updates that have been pushed to our remote branches to our
local machines. As we know, a branch is a variation of our repositories main code, so the
remote-tracking branches are branches that have been set up to pull and push from remote
repository.

1.1 Git fetch commands and options

git fetch <remote>

Fetch all of the branches from the repository. This also downloads all of the required
commits and files from the other repository.

git fetch <remote> <branch>

Same as the above command, but only fetch the specified branch.

git fetch --all

A power move which fetches all registered remotes and their branches:

git fetch --dry-run

The --dry-run option will perform a demo run of the command. It will output examples of
actions it will take during the fetch but not apply them.

1.2 Git Pull

The term pull is used to receive data from GitHub. It fetches and merges changes from the
remote server to your working directory.

The git pull command is used to pull a repository.

Local Repository Remote Repository

origin/master)<
Fetch

\puu/

Merge

Figurel3: Git pull

The git pull command is used to fetch and download content from a remote repository and
immediately update the local repository to match that content. Merging remote upstream
changes into your local repository is a common task in Git-based collaboration work flows.
The git pull command is actually a combination of two other commands, git fetch followed
by git merge. In the first stage of operation git pull will execute a git fetch scoped to the
local branch that HEAD is pointed at. Once the content is downloaded, git pull will enter a
merge workflow. A new merge commit will be-created and HEAD updated to point at the
new commit.

125|Version control — Trainee Manual

The git pull command first runs git fetch which downloads content from the specified
remote repository. Then a git merge is executed to merge the remote content refs and
heads into a new local merge commit. To better demonstrate the pull and merging process
let us consider the following example. Assume we have a repository with a main branch
and a remote origin.

Main on remota origin

V
OmOm©

O—((-0
0 0

Local origin/main in your repo Main

Figure 14: Local main branch and remote origin branch

In this scenario, git pull will download all the changes from the point where the local and
main diverged. In this example, that point is E. git pull will fetch the diverged remote
commits which are A-B-C. The pull process will then create a new local merge commit
containing the content of the new diverged remote commits.

Remote origin/main

N

OmOm©
OmOmOm®
T

Local main

Figure 15: New local merge after pull

126 | Version control — Trainee Manual

In the above diagram, we can see the new commit H. This commit is a new merge commit
that contains the contents of remote A-B-C commits and has a combined log message. This
example is one of a few git pull merging strategies. A --rebase option can be passed to git
pull to use a rebase merging strategy instead of a merge commit. The next example will
demonstrate how a rebase pull works. Assume that we are at a starting point of our first
diagram, and we have executed git pull --rebase.

Remote origin/main

N2

/[\

Local main

Figurel6: Git pull --rebase

In this diagram, we can now see that a rebase pull does not create the new H commit.
Instead, the rebase has copied the remote commits A--B--C and rewritten the local commits
E--F--G to appear after them in the local origin/main commit history.

Common Options

git pull <remote>

Fetch the specified remote’s copy of the current branch and immediately merge it into the
local copy. This is the same as git fetch < remote > followed by git merge origin/ < current-
branch > .

git pull --no-commit <remote>

Similar to the default invocation, fetches the remote content but does not create a new
merge commit.

git pull --rebase <remote>

Same as the previous pull Instead of using git merge to integrate the remote branch with
the local one, use git rebase.

git pull --verbose

Gives verbose output during a pull which displays the content being downloaded.

1.2 Operations on git fetch command

127 |Version control — Trainee Manual

The git fetch command is a powerful tool in Git that allows you to retrieve changes from a
remote repository and update your local repository accordingly. Here are some applications
of the various operations you mentioned:

1. Fetch the remote repository: When you run git fetch, Git connects to the remote
repository specified in the configuration and retrieves all the new commits,
branches, and tags from that remote repository. It downloads the latest changes to
your local repository, but it does not integrate them with your current working
branch.

2. Fetch the specific branch: By providing the branch name as an argument to git
fetch, you can fetch the latest changes only for that specific branch from the remote
repository. For example, if you want to fetch the latest changes for the branch
named "development,"” you would run git fetch origin development. This operation
updates your local repository with the latest commits and updates related to the
specified branch.

3. Fetch all branches simultaneously: By default, when you run git fetch without
specifying a specific branch, it fetches changes for all branches from the remote
repository. This operation retrieves the latest commits and updates for all branches,
updating your local repository accordingly.

4. Synchronize the local repository: git fetch is often used to synchronize your local
repository with the latest changes from the remote repository. After fetching the
latest changes, you can compare them with your local branches to see the
differences and decide how to integrate them. It allows you to review the changes,
merge them manually, or switch to a different branch to work on the updated
version.

git fetch is a useful command to keep your local repository up-to-date with the latest
changes from the remote repository. It fetches new commits, branches, and tags and allows
you to review and integrate them at your convenience without automatically merging them
into your current working branch.

2. Operations on git pull
The git pull command is used to fetch and merge changes from a remote repository into
your local branch. Here are the applications of the different operations you mentioned:

1. Default git pull: When you run git pull without any additional arguments, it performs
the default behavior of fetching the latest changes from the remote repository and
merging them into your current branch. It connects to the remote repository
specified in the configuration (usually the "origin" remote) and downloads any new
commits, branches, and tags. Then, it automatically merges those changes into your
current branch using the default merge strategy. If there are any conflicts, you will
need to resolve them manually.

128 | Version control — Trainee Manual

2. git pull remote branch: If you want to pull changes from a specific branch in the
remote repository, you can specify the branch name as an argument to git pull. For
example, running git pull origin feature-branch fetches the latest changes from the
"feature-branch" in the remote repository specified by the "origin" remote. It then
merges those changes into your current branch.

3. git force pull: The git force pull command is not a built-in Git command. However,
you can achieve a similar effect by combining the git fetch and git reset commands.
Running git fetch retrieves the latest changes from the remote repository, and then
git reset --hard origin/master resets your current branch to match the "master"
branch of the remote repository, discarding any local changes. Using this
combination effectively forces a pull-like behavior, overwriting your local branch
with the remote branch. Be cautious when using git force pull as it can cause
irreversible data loss.

4. git pull origin master: This git pull command explicitly specifies the remote
repository ("origin") and the branch to pull from ("master"). Running git pull origin
master fetches the latest changes from the "master" branch of the remote repository
and merges them into your current branch. It's a specific way to update your current
branch with the latest changes from the "master" branch of the remote repository.

git pull is a versatile command that allows you to fetch and merge changes from a remote
repository. By using different arguments, such as specifying the remote branch or force
pulling, you can tailor the behavior of git pull to suit your needs.

2.1 Differences between git fetch and git pull
To understand the differences between fetch and pull, let's know the similarities between
both of these commands. Both commands are used to download the data from a remote
repository. But both of these commands work differently. Like when you do a git pull, it
gets all the changes from the remote or central repository and makes it available to your
corresponding branch in your local repository. When you do a git fetch, it fetches all the
changes from the remote repository and stores it in a separate branch in your local
repository. You can reflect those changes in your corresponding branches by merging.
So basically.

1. git pull = git fetch + git merge

Git Fetch vs. Pull
Some of the key differences between both of these commands are as follows:

git fetch git pull

129 |Version control — Trainee Manual

Fetch downloads only new data from a Pull is used to update your current HEAD
remote repository. branch with the latest changes from the
remote server.

Fetch is used to get a new view of all the Pull downloads new data and directly
things that happened in a remote integrates it into your current working copy
repository. files.

Fetch never manipulates or spoils data. = Pull downloads the data and integrates it
with the current working file.

It protects your code from merge In git pull, there are more chances to create
conflict. the merge conflict.

It is better to use git fetch command It is not an excellent choice to use git pull if
with git merge command on a pulled you already pulled any repository.
repository.

<
‘! Practical Activity 3.1.2: Fetching file from GitHub repository

= "‘6
Things to Do
o 1 Task:

1: Read key reading 3.1.2 and ask clarification where necessary

2: Referring to the previous theoretical activities (3.1.1) you are requested to go to the
computer lab to fetch file from GitHub repository. This task should be done individually.
3: Apply safety precautions

4: Present out the steps to fetch file from GitHub repository.

5: Referring to the steps provided on task 3, fetch file from GitHub repository.

6: Present your work to the trainer and whole class

A
& Key readings 3.1.2: Fetching file from GitHub repository
1. Fetch a file from a GitHub repository
To fetch a file from a GitHub repository, you typically need to clone the repository to your
local machine. Here are the steps:
1. Find the Repository: Go to the GitHub website and navigate to the repository
containing the file you want to fetch.

130 | Version control — Trainee Manual

2. Get the Repository URL: Click on the "Code" button, then copy the URL provided.
It should look something like https://github.com/username/repository.git.

3. Open Terminal/Command Prompt: Open your terminal or command prompt on
your local machine.

4. Navigate to the Desired Directory: Use the cd command to navigate to the
directory where you want to clone the repository. For example:

cd path/to/directory

5.Clone the Repository: Use the git clone command followed by the repository URL to clone

the repository to your local machine:

git clone https:/f/github.com/username/repository.git

6.Navigate into the Cloned Repository: Move into the cloned repository directory using the
cd command:

cd repository

7. Fetch the File: If you know the path to the file you want to fetch, you can navigate to it

using a file explorer or use commands like Is (Unix-based systems) or dir (Windows) to list
the contents of the directory and locate the file. If the file is located within a subdirectory
of the repository, you can navigate to that subdirectory using the cd command.
Copy or Open the File: Once you have located the file, you can copy it to another
location on your local machine or open it using a text editor or IDE to view its
contents.

1.1 To fetch the remote repository:
We can fetch the complete repository with the help of fetch command from a repository
URL like a pull command does. See the below output:
Syntax:
1. S git fetch< repository Url>
example

Unpacking o©
From https:/
* hranch

In the above output, the complete repository has fetched from a remote URL.

131 | Version control — Trainee Manual

1.2 To fetch a specific branch:

Stepl: Navigate to Git Repository

Go to the desired local repository by executing the “cd” command:
S cd "C:\Users\nazma\Git\Test_14"

MIMNGWE: c/Users/nazma,/Git/ Test_14 - O X

, cd "C:\Users\nazma\Git\Test_14"

~/Git/Test_14

Step2:Add Remote URLs

Next, use the “git remote add” command along with the remote name and remote
repository URL for tracking changes:

S git remote add origin https://github.com/GitUser0422/demo5.git

MINGWEL: ¢/ Users/nazma/Git/ Test_14 — O >

$ git remote add origin https://github.com/GitUser0422/demo5.
git

~/Git/Test_14

Step 3: Verify Remote URLs List

Now, check the newly added remote URL in Git by running the following command:

S git remote -v

It can be seen that the remote URL has been added successfully:
MINGWEL: ¢/ Users/nazma/Git/ Test_14 — O *

$ git remote -v
or1gin_ https://github.com/GitUser0422/demo5.git (fetch)

origin https jithub. com/GitUser0422/demo5.git (push)

Step 4: Fetch Particular Remote Branch

Finally, execute the “git fetch” command with the remote name and the desired remote
branch name:

S git fetch origin master

Here, we have specified the remote branch name as “master”:

132 | Version control — Trainee Manual

MINGWEL: ¢/ Users/nazma/Git/ Test_14 — O *

~lGit/Test_14
$ git fetch origin master
From https://github.com/GitUser0422/demo5
branch master -> FETCH_HEAD

[new branch] master -> origin/master

=ct_14

We can also fetch a specific branch from a repository which is not master. It will only access
the element from a specific branch.
Syntax:
1. S git fetch <branch URL><branch name>
Example

$ git fetch https:/,
warning: no common commi
e: Enumerating ok
Counting obj

: / done.
From http_ dfgithub. | vedil/Git-Example
* branch 5 > FETCH_HEAD

ctop,/Git-Example

$ |
In the given output, the specific branch test has fetched from a remote URL.
Step 5: Verify Fetch Remote Branch
Lastly, run the “git branch” command along with the “-a” flag to list all branches including
the local and remote:
S git branch -a
As you can see the particular remote branch has been fetched successfully:
MIMNGWEL: ¢/ Users/nazma/Git/ Test_14 — O)4

git branch -a
alpha
beta

main
master

133 | Version control — Trainee Manual

That was all about fetching the particular remote Git repository branch.

To fetch all the branches simultaneously:

The git fetch command allows to fetch all branches simultaneously from a remote
repository. See the below example:

Syntax:
$ git fetch -all
Example:

ktop/Git-Example (master)

§ git fetch --all
Fetching origin
From https://github. com/

[new branch]
[new branch]

~/Desktop/Git-Example (master)

In the above output, all the branches have fetched from the repository Git-Example.

To synchronize the local repository:

Suppose, your team member has added some new features to your remote repository. So,
to add these updates to your local repository, use the git fetch command. It is used as
follows.

Syntax:

S git fetch origin

Example:

~/Desktop/Git-Example (master)
§ git fetch origin

ktop/Git-Example (master)
§ git fetch origin
Enumerating
Counting obj

ompressing obje

-

. pack-reused 0

vedil/Git-Example

> origin/test?

~/Desktop/Git-Example (master)

In the above output, new features of the remote repository have updated to my local
system. In this output, the branch test2 and its objects are added to the local repository.
The git fetch can fetch from either a single named repository or URL or from several
repositories at once. It can be considered as the safe version of the git pull commands.
The git fetch downloads the remote content but not update your local repo's working state.
When no remote server is specified, by default, it will fetch the origin remote.

1.3 Differences between git fetch and git pull

134 | Version control — Trainee Manual

To understand the differences between fetch and pull, let's know the similarities between
both commands. Both commands are used to download the data from a remote repository.
But both commands work differently. Like when you do a git pull, it gets all the changes
from the remote or central repository and makes it available to your corresponding branch
in your local repository. When you do a git fetch, it fetches all the changes from the remote
repository and stores it in a separate branch in your local repository. You can reflect those
changes in your corresponding branches by merging.
So basically,
git pull = git fetch + git merge
Pulling changes from a remote repository in Git involves several steps, depending on the
specific operation you're performing. Here are the steps for various scenarios:
1.Pulling Changes from the Default Branch:
e Navigate to your local repository directory using the terminal or command
prompt.
e Use the following command to pull changes from the default branch (usually
"main" or "master") of the remote repository:

git pull

2.Pulling Changes from a Specific Branch:
e [f you want to pull changes from a specific branch of the remote repository, specify
both the remote and branch names in the pull command:

git pull <remote-name> <branch-name>

Replace <remote-name> with the name of the remote repository (often "origin") and
<branch-name> with the name of the branch you want to pull changes from.
Pulling Changes Without Merging:
e |[f you want to fetch changes from the remote repository without merging them into
your local branch immediately, you can use the fetch command followed by the
checkout command to inspect the changes before merging:

git fetch

git checkout <branch-name>

This will fetch changes from the remote repository but keep your local branch unchanged
until you explicitly merge the changes.
3.Pulling Changes with Rebase:
e To pull changes from the remote repository and rebase your local commits on top
of the remote commits, use the rebase option with the pull command:

git pull

4.Pulling Changes with Force:

135|Version control — Trainee Manual

® In some cases, you may need to forcefully overwrite your local changes with the
changes from the remote repository. Use the force option with the pull command:

git pull

Be cautious when using this option, as it can result in the loss of local changes.

There is another way to pull the repository. We can pull the repository by using the git

pull command. The syntax is given below:

1. S git pull <options><remote>/<branchname>
2. $git pull origin master

Resolving merge conflicts in Git involves several steps. Here's a guide on how to handle

merge conflicts:
1. Identify Conflicts: After attempting to merge changes from a remote branch or
another local branch, Git may encounter conflicts if the changes overlap or conflict
with each other. Git will notify you of these conflicts and mark the conflicted files in
your working directory.
2. View Conflicts: Open the conflicted files in a text editor. Git will insert conflict
markers (<<<<<<<, =======, and >>>>>>>) to indicate the conflicting sections. These
markers delineate the conflicting changes from both branches.
3. Analyze Conflicts: Review the conflicting sections in the file. Identify the changes
from both branches and decide how to resolve the conflicts. You may choose to
keep one version of the changes, combine them, or make entirely new changes.
4. Resolve Conflicts: Edit the conflicted file to resolve the conflicts manually.
Remove the conflict markers and make the necessary adjustments to reconcile the
conflicting changes. Ensure that the final version of the file integrates the desired
changes from both branches.
5. Save Changes: After resolving the conflicts, save the changes to the file in your
text editor.
6.Mark as Resolved: Once you have resolved the conflicts in all conflicted files, stage
the changes by marking the conflicts as resolved:

git <conflicted-file>

7.Commit Changes: After staging the resolved changes, commit the changes to complete
the merge process:

git

This will open a commit message editor where you can provide a description of the merge
and the resolutions you made to the conflicts.

8.Continue with Merge: If you were in the middle of a merge operation when conflicts
occurred, you can continue the merge process after resolving conflicts by running:

136 | Version control — Trainee Manual

This command will finalize the merge commit with the resolved conflicts.

9.Verify Resolution: After committing the changes, verify that the conflicts have
been resolved successfully by reviewing the merged files and testing the
functionality of the merged code.

10.Push Changes: If you were merging changes from a remote branch, push the
merged changes to the remote repository:

git

This will update the remote repository with the resolved merge

g
Points to Remember

To fetch a file from a GitHub repository, you typically need to clone the repository to your

local machine. Here are the steps:
1.Find the Repository
2.Get the Repository URL
3.0pen Terminal/Command Prompt
4.Clone the Repository
5.Navigate into the Cloned Repository
6. Fetch the File

@Eﬂ

The owner of the GBY project, which uses Git for version control, needs to improve it by adding

Application of learning 3.1.

new features and content to make management, collaboration, and maintenance easier.
Different tasks are given to a team of developers to complete. As with getting the most recent
updates from a cloud-based document collaboration platform, Alice is responsible with
obtaining the remote repository. Like subscribing to channels or subjects on a social media
platform, Bob oversees fetching a particular branch. Claire's job is to synchronize the local
repository across all branches at once, which is like syncing a music streaming service across
several devices. David executes the standard git pull action, which is comparable to an email
client automatically downloading new emails. Emma "pulls" a particular remote branch, which
is comparable to downloading specific files or directories from cloud storage. In a manner like
overwriting local files on a file synchronization service, Frank manages the git pull --force
procedure. Last but not least, Grace updates a piece of software to the most recent stable
version by pulling changes from the "master" branch.

137 | Version control — Trainee Manual

— = mw __&vy—

Indicative content 3.2: Push files to remote branch

Duration: 6 hrs

2 Theoretical Activity 3.2.1: Introduction to files pushing to remote
R

-
Things to Do
) 1 Tasks:

1: In small groups, you are requested to answer the following questions related to the files

pushing to remote branch:

1) What do you understand about the term push?

2) Can you provide a description of the tags used in the “git push® command?
2: Provide the answer for the asked questions and write them on papers.
3: Present the findings/answers to the whole class
4: For more clarification, read the key readings 3.2.1. In addition, ask questions where
necessary.

3

“0,
Key readings 3.2.1: Description of Git push operations
1. Definition of Git Push

Using the git push command, you can upload your files available on your local machine to
the remote repository. After git pushes the changes to the remote repository other
developers can access the changes and they can contribute their changes by git pulling.
Before pushing it to the remote repository you need to do a git commit to your local
machine.

1.1 Git Push Command

Git push allows us to transfer files from the local repository to remote repository hosting
services like GitHub, GitLab, etc. Other developers who want to work on the files can access
them after being uploaded to a remote repository.

138 | Version control — Trainee Manual

https://www.geeksforgeeks.org/what-is-git-commit/
https://www.geeksforgeeks.org/how-to-download-and-install-git-lab/

Before Pushing After Pushing
Origin/Main
| |
=000 ? S W ?

Pull add

commit

Push

Local repo Remote repo

Figure 17: Push diagram

In the above diagram, we can observe If our local main branch is way back when compared
to the central main repository after that git push origin main will publish the changes. git
push is essential as same as the git merge.
git push <remote> <branch>
1. The <remote> option refers to the remote repository to which you want to push
your files it will refer to its alias name where the name is mapped with the remote
repository URL
2. The <branch> option represents the branch of the GitHub repository which you
want to push
The push term refers to upload local repository content to a remote repository. Pushing is
an act of transfer commits from your local repository to a remote repository. Pushing is
capable of overwriting changes; caution should be taken when pushing.

139 |Version control — Trainee Manual

Moreover, we can say the push updates the remote refs with local refs. Every time you push
into the repository, it is updated with some interesting changes that you made. If we do not
specify the location of a repository, then it will push to default location at origin master.
The "git push" command is used to push into the repository. The push command can be
considered as a tool to transfer commits between local and remote repositories. The basic
syntax is given below:

1. $ git push <option> [<Remote URL><branch name><refspec>...]

1.2 Description of Git Push Tags

<repository>: The repository is the destination of a push operation. It can be either a URL
or the name of a remote repository.

<refspec>: It specifies the destination ref to update source object.

--all: The word "all" stands for all branches. It pushes all branches.

--prune: It removes the remote branches that do not have a local counterpart. Means, if
you have a remote branch say demo, if this branch does not exist locally, then it will be
removed.

--mirror: It is used to mirror the repository to the remote. Updated or Newly created local
refs will be pushed to the remote end. It can be force updated on the remote end. The
deleted refs will be removed from the remote end.

--dry-run: Dry run tests the commands. It does all this except originally update the
repository.

--tags: It pushes all local tags.

--delete: It deletes the specified branch.

-u: It creates an upstream tracking connection. It is very useful if you are going to push the
branch for the first time.

1.3 Explanation of operations on git push

push on origin master

In Git, the command git push origin master is used to push your local branch named
"master" to the remote repository named "origin." Here's a breakdown of what each part
of the command means:

git push: This is the command used to upload your local commits to a remote repository.
origin: This refers to the name of the remote repository where you want to push your
changes. By convention, "origin" is the default name given to the main remote repository
when you clone it.

master: This is the name of the local branch that you want to push. In this case, "master" is
the branch you are pushing.

Git push origin master is a special command-line utility that specifies the remote branch
and directory. When you have multiple branches and directory, then this command assists
you in determining your main branch and repository.

140 | Version control — Trainee Manual

Generally, the term origin stands for the remote repository, and master is considered as
the main branch. So, the entire statement "git push origin master" pushed the local content
on the master branch of the remote location.
Syntax:

1. S git push origin master

Git push force

The git push --force command is used to forcefully push your local branch and overwrite
the corresponding branch on the remote repository, even if it results in losing commits
or overwriting someone else's work. It allows you to make significant changes to the
history of the remote branch.
The git force push allows you to push local repository to remote without dealing with
conflicts. It is used as follows:
1. S git push <remote><branch> -f
Or
1. $ git push <remote><branch> -force
The -f version is used as an abbreviation of force. The remote can be any remote location
like GitHub, Subversion, or any other git service, and the branch is a particular branch name.
For example, we can use git push origin master -f.
We can also omit the branch in this command. The command will be executed as:
1. Sgit push <remote> -f
We can omit both the remote and branch. When the remote and the branch both are
omitted, the default behavior is determined by push.default setting of git config. The
command will be executed as:
1. S git push -f
How to Safe Force Push Repository:
There are several consequences of force pushing a repository like it may replace the work
you want to keep. Force pushing with a lease option is capable of making fail to push if there
are new commits on the remote that you didn't expect. If we say in terms of git, then we
can say it will make it fail if remote contains untracked commit. It can be executed as:
1. Sgit push <remote><branch> --force-with-lease

git push verbose or Git push -v/--verbose

The git push --verbose command is used to display detailed information about the push
operation. It provides additional output, including progress updates, error messages, and
other relevant details during the push process.

The -v stands for verbosely. It runs command verbosely. It pushed the repository and gave
a detailed explanation about objects. Suppose we have added a newfile2.txt in our local

141 | Version control — Trainee Manual

repository and commit it. Now, when we push it on remote, it will give more description
than the default git push. Syntax of push verbosely is given below:
Syntax:
1. $git push-v
Or
1. S git push --verbose

delete a remote branch
To delete a remote branch in Git, you can use the git push command with the --delete or -
d option, followed by the name of the remote branch you want to delete.
We can delete a remote branch using git push. It allows removing a remote branch from
the command line. To delete a remote branch, perform below command:
Syntax:

1. S git push origin -delete edited

@2}
‘! Practical Activity 3.2.2: Pushing files to remote branch.

== ,;t;
Things to Po
o 1 Task:

1: Read key reading 3.2.2 and ask clarification where necessary

2: Referring to three (3) previous theoretical activities (3.2.1) you are requested to go to the
computer lab to push files to remote branch. This task should be done individually.

3: Apply safety precautions.

4: Present the steps of pushing files to the remote branch.

5: Referring to the steps provided on task 3, push files to the remote branch.

6: Present your work to the trainer and whole class

&
Key readings 3.2.1: Applying Git push operations

1. Pushing files to a remote branch
Pushing files to a remote branch in Git involves several steps. Here's a detailed guide:

1. Add and Commit Changes: First, ensure that you have made the necessary changes to
your files. Use the following commands to stage your changes and commit them:

142 |Version control — Trainee Manual

git add <filel> <file2- ...

git commit -m

2. Check Remote Repository Status: Before pushing changes, it's a good practice to verify
the status of your local repository compared to the remote repository. Use the following
command:

git remote -v

git branch -vv

3. Fetch and Pull Changes: Fetch the latest changes from the remote repository and ensure
your local branch is up to date. This step helps in avoiding conflicts during the push.

git fetch origin

git pull eorigin <branch_name>

4.Push Changes to Remote Branch: After committing your changes and ensuring your local
branch is up to date, push your changes to the remote branch:

git push origin <local_branch_name>:<remote_branch_name:=

Replace <local_branch_name> with the name of vyour local branch and
<remote_branch_name> with the name of the remote branch you want to push to. If the
branch does not exist on the remote repository, it will be created. If it does exist, the
changes will be pushed to that branch.

Alternatively, if you're working on the same branch locally and remotely, you can use the

simpler form:

git push origin <branch_name:

5.Verify Changes on Remote Repository: Once the push is successful, verify that your
changes are reflected on the remote repository by visiting the repository's web interface or
using Git commands to check the remote branch:

git ls-remote origin

git branch -r

143 | Version control — Trainee Manual

1.1 Git Push Origin Master

Git push origin master is a special command-line utility that specifies the remote branch
and directory. When you have multiple branches and directory, then this command assists
you in determining your main branch and repository.

Generally, the term origin stands for the remote repository, and master is considered as the
main branch. So, the entire statement "git push origin master" pushed the local content on
the master branch of the remote location.

Syntax:
1. S git push origin master
Let's understand this statement with an example.

Let's make a new commit to my existing repository, say GitExample2. | have added an
image to my local repository named abc.jpg and committed the changes. Consider the
below
image:

~/Desktop/GitExample? (master)
% git status
On branch master
vour branch is up to date with 'origin/master’.

Untracked files: _
(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add"” to trac

~/Desktop/GitExample?2 (master)
$ git add abc.jpg

'GitExample2 (master)
b git commit -m "added DI]
aster 0d5191f] added a new 1 e to prject
1 file chang 0 insertions(+), 0 deletions(-)
create mode 100644 abc.jpg

In the above output, | have attached a picture to my local repository. The git status
command is used to check the status of the repository. The git status command will be

performed as follows:
1. S git status

It shows the status of the untracked image abc.jpg. Now, add the image and commit the

changes as:

1. S git add abc.jpg

144 | Version control — Trainee Manual

2. Sgit commit -m "added a new image to project."
The image is wholly tracked in the local repository. Now, we can push it to origin master as:
1. S git push origin master

Output:

itExample?

% git push origin master
Enumerating objects
Counting objects: 1

Delta
Comp
Total 3
remote: Resolv as: 10), completed with 1 Tocal object.
1/GitExample2.git
master -> master

The file abc.jpg is successfully pushed to the origin master. We can track it on the remote
location. | have pushed these changes to my GitHub account. | can track it there in my
repository. Consider the below image:

\
Branch: master v New pull request Create new file = Upload files | Find File Clo download

ImDwivedil added a new image to prject Latest commit 8d5181f 30 minutes ago
README.md Initial commit ast month
abcjpg added a new image to prject 30 minutes ago
design.css new files via upload 27 days ago
design2.css Update design2.css 3 days ago
ndex,jsp new files via upload 27 days ago
master,jsp new files via upload 27 days ago
merge the branch Create merge the branch ast month
newfiletut new commit in master branch 8 days ago
newfileltxt new comit on test2 branch 8 days ago

In the above output, the pushed file abc.jpg is uploaded on my GitHub account's master
branch repository.

1.2 Git Force Push

The git force push allows you to push local repository to remote without dealing with
conflicts. It is used as follows:

1. S git push <remote><branch> -f

145 | Version control — Trainee Manual

Or
1. S git push <remote><branch> -force

The -f version is used as an abbreviation of force. The remote can be any remote location
like GitHub, Subversion, or any other git service, and the branch is a particular branch name.
For example, we can use git push origin master -f.

We can also omit the branch in this command. The command will be executed as:
1. Sgit push <remote> -f

We can omit both the remote and branch. When the remote and the branch both are
omitted, the default behavior is determined by push.default setting of git config. The
command will be executed as:

1. $git push -f
How to Safe Force Push Repository:

There are several consequences of force pushing a repository like it may replace the work
you want to keep. Force pushing with a lease option is capable of making fail to push if there
are new commits on the remote that you didn't expect. If we say in terms of git, then we
can say it will make it fail if remote contains untracked commit. It can be executed as:

1. Sgit push <remote><branch> --force-with-lease
Git push -v/--verbose

The -v stands for verbosely. It runs command verbosely. It pushed the repository and gave
a detailed explanation about objects. Suppose we have added a newfile2.txt in our local
repository and commit it. Now, when we push it on remote, it will give more description
than the default git push. Syntax of push verbosely is given below:

Syntax:

1. S git push -v Or S git push --verbose

Consider the below output:

146 | Version control — Trainee Manual

~/Desktop/GitExamp] e

$ git push -v
Pushing to https://github. com/ImDwivedil/GitExample2. git
Enumerating obj
Counting obj : , done.

ompr 2 threads

¢ one.

writing obj 0% : 48.00 KiB/s, done.
Total 3

updating local tra

If we compare the above output with the default git option, we can see that git verbose
gives descriptive output.

2. Delete a Remote Branch

We can delete a remote branch using git push. It allows removing a remote branch from
the command line. To delete a remote branch, perform below command:

Syntax:
1. S git push origin -delete edited
Output:
~/Desktop/GitExample2 (master)

sh origin --delete edited
To https github.com/ImDwivedil/GitExample2.git

- [deleted] edited

~/Desktop/GitExample2

In the above output, the git push origin command is used with -delete option to delete a
remote branch. | have deleted my remote branch edited from the repository. Consider the

below image:

Active branches
PullRequestDemo Updated 5 days age by ImDwivedil 2|1 #4 m
| edited Updated 5 days ago by ImDwivedil ‘ 112 #7 o
BranchCherry Updated 23 days ago by ImDwivedil 111 #3 i

It is a list of active branches of my remote repository before the operating command.

147 |Version control — Trainee Manual

Active branches
PullRequestDemo Updsted 5 days ago by ImDwivedil 211 #4 Ef

BranchCherry Updated 23 days ago by ImDwivedil 11 #3 m

The above image displays the list of active branches after deleting command. Here, you can
see that the branch edited has removed from the repository.

 p—
— ‘
—

Points to Remember

e Tags in Git are used to mark specific points in history, such as releases or important c
ommits.
e There are the tags used with the git push command like :<repository>,<refspec>,--all,
--prune,--mirror,--dry-run,--tags.
e To push files to a remote branch in Git, you typically follow these steps:
1. Add and Commit Changes
2. Check Remote Repository Status
3. Fetch and Pull Changes
4. Push Changes to Remote Branch
5. Verify Changes on Remote Repository

@Eﬂ

As a member of a team project called "TechApp" using Git for version control. You are asked
to implement a new feature and merge it into the main codebase. However, you face

Application of learning 3.2.

challenges along the way. You start by pushing your local changes to the "origin master"
branch to make them accessible to your team. Later, you encounter conflicts with recent
updates from others, requiring you to forcefully update the remote repository. To monitor
the push process, you use the verbose option, which provides detailed information about the
operation. Finally, after successfully merging your changes, you delete the remote branch that
is no longer needed. Through effective communication and proper use of Git commands, you
ensure smooth collaboration and maintain a clean repository.

148 |Version control — Trainee Manual

— — =

o ——— e e —

| Indicative content 3.3: Merge branches on remote repository

Duration: 7hrs

Q=
Q EE Theoretical Activity 3.3.1: Description of merge branches on remote

repository

:rh;mﬁ o 6"
» \] Tasks:

1: In small groups, you are requested to answer the following questions related to the merge
branches on remote:

I. Can you discuss the operation on git rebase command, pull requests, operation on git
merge.

2: Provide the answer for the asked questions and write them on papers.

3: Present the findings/answers to the whole class

4: For more clarification, read the key readings 3.3.1. In addition, ask questions where
necessary.

N g
v Key readings 3.3.1.: Description of merge branches on remote repository
1.Git Rebase
Rebasing is a process to reapply commits on top of another base trip. It is used to apply a
sequence of commits from distinct branches into a final commit. It is an alternative of git
merge command. It is a linear process of merging.
In Git, the term rebase is referred to as the process of moving or combining a sequence of
commits to a new base commit. Rebasing is very beneficial and it visualized the process in
the environment of a feature branching workflow.

git rebase is a Git command used to reapply a series of commits from one branch onto
another branch. It allows you to rewrite the commit history of the current branch by

incorporating changes from another branch, typically the branch specified as the new base.

Here is the basic syntax for the git rebase command:

git rebase =

<base>: The branch or commit onto which you want to reapply the commits from the
current branch. This can be a branch name or a commit hash.
When you run git rebase <base>, Git performs the following actions:
Identifies the common ancestor commit between the current branch and the
specified <base> branch.
Retrieves the commits unique to the current branch since the common ancestor.

149 |Version control — Trainee Manual

"Replays" each of these commits onto the <base> branch one by one, effectively
incorporating the changes into the target branch.
Moves the current branch pointer to the tip of the rebased commits, effectively
rewriting the branch history.
In cases where conflicts occur during the rebase process, Git will pause the rebase operation
and prompt you to resolve the conflicts manually. After resolving conflicts, you can continue
the rebase operation using git rebase --continue. If you encounter issues or decide to abort
the rebase, you can use git rebase --abort to revert to the state before the rebase began.

git rebase is a Git command used to reapply a series of commits from one branch onto
another branch. It allows you to rewrite the commit history of the current branch by
incorporating changes from another branch, typically the branch specified as the new base.
Here is the basic syntax for the git rebase command:

git rebase <base>

® <base>: The branch or commit onto which you want to reapply the commits from
the current branch. This can be a branch name or a commit hash.
When you run git rebase <base>, Git performs the following actions:
Identifies the common ancestor commit between the current branch and the
specified <base> branch.
Retrieves the commits unique to the current branch since the common ancestor.
"Replays" each of these commits onto the <base> branch one by one, effectively
incorporating the changes into the target branch.
Moves the current branch pointer to the tip of the rebased commits, effectively
rewriting the branch history.
In cases where conflicts occur during the rebase process, Git will pause the rebase operation
and prompt you to resolve the conflicts manually. After resolving conflicts, you can continue
the rebase operation using git rebase -continue. If you encounter issues or decide to abort
the rebase, you can use git rebase -abort to revert to the state before the rebase began.
It's essential to use git rebase carefully, especially when working with shared branches, as
it alters the commit history. Rewriting history can cause confusion and conflicts for
collaborators who have based their work on the original branch. Therefore, it's crucial to
communicate with team members before performing rebases on shared branches.

It is good to rebase your branch before merging it.

150 | Version control — Trainee Manual

T *C-Commits

Generally, it is an alternative of git merge command. Merge is always a forward changing
record. Comparatively, rebase is a compelling history rewriting tool in git. It merges the

Figurel8: Git rebase

different commits one by one.

Suppose you have made three commits in your master branch and three in your other
branch named test. If you merge this, then it will merge all commits in a time. But if you
rebase it, then it will be merged in a linear manner. Consider the below image:

Test Branch

C1 > C2 p—>» (3

C1 —> C2 —>» C3

Master Branch
Figure 19 : Merging after git rebase

The above image describes how git rebase works. The three commits of the master branch
are merged linearly with the commits of the test branch.

Merging is the most straightforward way to integrate the branches. It performs a three-way
merge between the two latest branch commits.

When using the ‘git rebase’ command in Git, there are several key operations and steps
involved in the process:

151 | Version control — Trainee Manual

1. Start a Rebase: Begin the rebase operation by running "git rebase <base-branch>", where
“<base-branch>" is the branch you want to rebase onto. This command sets the base for the
rebase operation.

2. Resolve Conflicts: During the rebase process, Git may encounter conflicts if changes in
the current branch conflict with changes in the base branch. You need to resolve these
conflicts by editing the conflicting files, marking them as resolved, and continuing the
rebase.

3. Continue Rebase: After resolving conflicts, continue the rebase process by using git
rebase --continue’. Git will apply the remaining commits on top of the base branch.

4. Abort Rebase: If you encounter issues during the rebase process and want to abort it,
you can use ‘git rebase --abort’ to return to the state before the rebase started.

5. Skip Commits: In some cases, you may want to skip applying certain commits during the
rebase. You can do this by using “git rebase --skip™ for the specific commit you want to skip.
6. Edit Commits: You can edit, squash, or reorder commits during the rebase process using
interactive rebase by running “git rebase -i'.

7. Push Changes: Once the rebase is complete and the branch is updated with the new
commit history, you can push the changes to the remote repository using "git push’.

2. Git Pull Request

Pull request allows you to announce a change made by you in the branch. Once a pull
request is opened, you are allowed to converse and review the changes made by others. It
allows reviewing commits before merging into the main branch.

Pull request is created when you committed a change in the GitHub project, and you want
it to be reviewed by other members. You can commit the changes into a new branch or an
existing branch.

Once you've created a pull request, you can push commits from your branch to add them
to your existing pull request.

3. Git Merge and Merge Conflict

In Git, the merging is a procedure to connect the forked history. It joins two or more
development history together. The git merge command facilitates you to take the data
created by git branch and integrate them into a single branch. Git merge will associate a
series of commits into one unified history. Generally, git merge is used to combine two
branches.

152 | Version control — Trainee Manual

Feature

e

erge

Master

Figure 20: Merge branches

It is used to maintain distinct lines of development; at some stage, you want to merge the
changes in one branch. It is essential to understand how merging works in Git.

In the above figure, there are two branches master and feature. We can see that we made
some commits in both functionality and master branch, and merge them. It works as a
pointer. It will find a common base commit between branches. Once Git finds a shared base
commit, it will create a new "merge commit." It combines the changes of each queued
merge commit sequence.

4. Git Merge Conflict

When two branches are trying to merge, and both are edited at the same time and in the
same file, Git won't be able to identify which version is to take for changes. Such a situation
is called merge conflict. If such a situation occurs, it stops just before the merge commit so

that you can resolve the conflicts manually.

Remote
Repository

Pull Request

>

LUWN
onbWN=

User B

MERGE CONFLICT

auk

User A

Figure 21: Merge conflict

153 | Version control — Trainee Manual

o
‘! Practical Activity 3.3.2: Merging branches on remote repository

-
;M \\ Task:

1: Read key reading 3.3.2 and ask clarification where necessary

2: Referring to the previous theoretical activities (3.3.1) you are requested to go to the
computer lab to merge branches on remote repository. This task should be done individually.
3: Apply safety precautions.

4: Present out the steps of merging branches on remote repository.

5: Referring to the steps provided on task 3, merge branches on remote repository.

6: Present your work to the trainer and whole class

&
Key readings 3.3.2: Applying Git merge commands
1. Merging branches

Merging branches on a remote repository involves several steps. Below are the general
steps to merge branches on a remote repository, assuming you're using Git:

1. Fetch Remote Changes: Before merging branches, ensure you have the latest changes
from the remote repository. Use the following command to fetch the latest changes:

g1t Ffetch origin

Replace origin with the name of your remote repository if it's different.

2.Checkout the Target Branch: Switch to the branch into which you want to merge the
changes. For example, to merge changes into the master branch:

git checkout master

3. Merge the Branch: Merge the changes from the source branch into the target branch
using the git merge command. For instance, if you want to merge changes from a branch
named feature-branch into master:

git merge feature-branch

This command will merge the changes from feature-branch into the currently
checked out branch (in this case, master).

154 | Version control — Trainee Manual

4. Resolve Conflicts (if any): If there are conflicts between the changes in the branches
being merged, Git will prompt you to resolve them. Open the conflicted files, resolve the
conflicts, and then stage the changes.

5.Commit the Merge: After resolving conflicts, commit the merge changes:

This commits the merge, incorporating the changes from the source branch into the
target branch.

6.Push Changes to Remote Repository: Finally, push the merged changes to the remote
repository:

git push origin master

Replace master with the name of your target branch if it's different. This command
will update the remote repository with the merged changes.

7.Delete Source Branch (Optional): If you've finished with the source branch and no longer
need it, you can delete it using:

git branch -d feature-branch

Or, to delete it remotely as well:

git push origin --delete feature-branch

This step is optional and should be performed only if you're certain the branch is no longer
needed.

2. Git rebase

When you made some commits on a feature branch (test branch) and some in the master
branch. You can rebase any of these branches. Use the git log command to track the
changes (commit history). Checkout to the desired branch you want to rebase. Now
perform the rebase command as follows:

Syntax:
Sgit rebase <branch name>

If there are some conflicts in the branch, resolve them, and perform below commands to

155 | Version control — Trainee Manual

continue changes:
S git status

It is used to check the status,
Sgit rebase --continue

The above command is used to continue with the changes you made. If you want to skip
the change, you can skip as follows:

1. S git rebase --skip

When the rebasing is completed. Push the repository to the origin. Consider the below
example to understand the git merge command.

Suppose that you have a branch say test2 on which you are working. You are now on the
test2 branch and made some changes in the project's file newfilel.txt.

Add this file to repository:
1. S git add newfilel.txt
Now, commit the changes. Use the below command:
1. S git commit -m "new commit for test2 branch."
The output will look like:
[test2 a835504] new commit for test2 branch
1 file changed, 1 insertion(+)
Switch the branch to master:
1. S git checkout master
Output:
Switched to branch 'master.’
Your branch is up to date with 'origin/master.'

Now you are on the master branch. | have added the changes to my file, says newfile.txt.
The below command is used to add the file in the repository.

1. S git add newfile.txt
Now commit the file for changes:

1. S git commit -m "new commit made on the master branch."

156 | Version control — Trainee Manual

Output:

[master 7fe5e7a] new commit made on master

1 file changed, 1 insertion (+)

HiMaNshU@HiMaNshU-PC MINGW64 ~/Desktop/GitExample2 (master)
2.1 Rebase Branch

If we have many commits from distinct branches and want to merge it in one. To do so, we
have two choices either we can merge it or rebase it. It is good to rebase your branch.

From the above example, we have committed to the master branch and want to rebase it
on the test2 branch. Let's see the below commands:

1. S git checkout test2
This command will switch you on the test2 branch from the master.
Output:
Switched to branch 'test2.'

Now you are on the test2 branch. Hence, you can rebase the test2 branch with the master
branch. See the below command:

1. S git rebase master

This command will rebase the test2 branch and will show as Applying: new commit on
test2 branch. Consider the below output:

Output:

~/Desktop/GitExample2 (test)
$ git rebase master
First, rewinding head to replay your work on top of it...
Fast-forwarded test to master.

~/Desktop/GitExample2 (test)

3. Pull Request

To create a pull request, you need to create a file and commit it as a new branch. As we
mentioned earlier in this topic, how to commit a file to use git pull. Select the option "create
a new branch for this commit and start a pull request" from the bottom of the page. Give
the name of the new branch. Select the option to propose a new file at the bottom of the
page. Consider the below image.

157 |Version control — Trainee Manual

=0 Commit directly to the master branch.

requests.

11 Create a new branch for this commit and start a pull request. Learn more about pull

I PullRequestDemo

Cancel

Propose new file

In the above image, | have selected the required option and named the file
as PullRequestDemo. Select the option to propose a new file. It will open a new page. Select

the option create pull request. Consider the below image:

create demo

|
e
|
|

Write | Preview MBI € ¢© @ = EY=

text

Attach files by dragging & dropping, selecting or pasting them.

Create pull request ~

@R &~

&
(M4

Now, the pull request is created by you. People can see this request. They can merge this

request with the other branches by selecting a merged pull request.
Use of "git merge" command

4. apply git merge operations

The git merge command is used to merge the branches.

The syntax for the git merge command is as:

158 | Version control — Trainee Manual

1. S git merge <query>

It can be used in various context. Some are as follows:

Scenariol: To merge the specified commit to currently active branch:

Use the below command to merge the specified commit to currently active branch.
1. S git merge <commit>

The above command will merge the specified commit to the currently active branch. You
can also merge the specified commit to a specified branch by passing in the branch name
in <commit>. Let's see how to commit to a currently active branch.

See the below example. | have made some changes in my project's file newfilel.txt and
committed it in my test branch.

add newfilel.txt

commit -m "edited newfi]
d2bb07d] edited newfile

op/GitExample? (test)

s dZ2bb07dc9352e194b13075dcfd28e4des02 cOV ObRI eSS

Author: ImDwivedil <himan dube @gmai 1. com:=
Wed Sep 25 11: 4 2019

edited newfilel.txt

newfilel added

Copy the particular commit you want to merge on an active branch and perform the merge
operation. See the below output:

t git checkout test2
switched to branch

% git merge dZbb07d
. . d2bb0

1 file changed, 1 insertioni{+), 1 deletion{-)

op/GitExample2

159 |Version control — Trainee Manual

In the above output, we have merged the previous commit in the active branch test2.
Scenario2: To merge commits into the master branch:

To merge a specified commit into master, first discover its commit id. Use the log command
to find the particular commit id.

1. Sgitlog

See the below output:

_|||'|

s 2352202 Ugﬂlgd'FE?DS ?U?ESSFdEd?lS Ed?Z 3'F954 0 -Z: HEAD -=

: I1D'W-. "-FJduh#fw
Wed Se

newfilel added

sers.noreply.github. com:

Merge pull request #1 from ImDwivedil/branchz

e the branch
To merge the commits into the master branch, switch over to the master branch.
1. S git checkout master

Now, Switch to branch 'master' to perform merging operation on a commit. Use the git
merge command along with master branch name. The syntax for this is as follows:

1. S git merge master
See the below output:

top,/GitExamplez
out master
tched to branch =ter'
Your branch is up to date with "origin/master'.

5 n1f merge dfe705

top/GitExample2

As shown in the above output, the commit for the commit

160 | Version control — Trainee Manual

id 2852e020909dfe705707695fd6d715cd723f9540 has merged into the master branch.
Two files have changed in master branch. However, we have made this commit in
the test branch. So, it is possible to merge any commit in any of the branches.

Open new files, and you will notice that the new line that we have committed to the test
branch is now copied on the master branch.

Scenario 3: Git merge branch.

Git allows merging the whole branch in another branch. Suppose you have made many
changes on a branch and want to merge all of that at a time. Git allows you to do so. See
the below example:

In the given output, | have made changes in newfilel on the test branch. Now, | have
committed this change in the test branch.

"edit newfilel’

edit newfilel
1 insertion(+)

Now, switch to the desired branch you want to merge. In the given example, | have switched
to the master branch. Perform the below command to merge the whole branch in the active
branch.

1. S git merge <branchname>

(use "git push™ to publish wour

~/Desktop/Gi1tExample2

, 1 deletion(-)

As you can see from the given output, the whole commits of branch test2 have merged to
branch master.

5. Git Merge Conflict
Let's understand it by an example.

Suppose my remote repository has cloned by two of my team member userl and user2.
The userl made changes as below in my projects index file.

161 | Version control — Trainee Manual

=4 bash_prafile [index html E3 [inde
1 <head>
2 <body:>
3 <title> This is a Git example</Title>
: <hl>» Git is a version control</hl>
</head>
</body>

Update it in the local repository with the help of git add command.

¥ git add index.html

commit
er fede edited by
le changed, 1 inserti

ng up
10:0%
" 345.00 K1B/=, done.

ompleted with 1 Tocal object.

Now, my remote repository will look like this:

ImDwivedil edited by userl Latest commit fedef27 6 minutes ago
Demo Create Demo 9 days ago
READMEmd Create README.md 29 days ago

ndex.htm edited by userl

new file add new file 9 days ago
newfile2 newfile2 8 days ago

It will show the status of the file like edited by whom and when.

Now, at the same time, user2 also update the index file as follows.

162 | Version control — Trainee Manual

= bash_profile ||J ndex htm I:Iindex.l'rtml_”

1 <head>

2 <body>

3 <title> This is a Git example</Title>

4 <h2> Git i=s a version control system</hi>
</head>
</body>

User2 has added and committed the changes in the local repository. But when he tries to
push it to remote server, it will throw errors. See the below output:

add index. html

ot

To http

In the above output, the server knows that the file is already updated and not merged with
other branches. So, the push request was rejected by the remote server. It will throw an
error message like [rejected] failed to push some refs to <remote URL>. It will suggest you
to pull the repository first before the push. See the below command:

163 | Version control — Trainee Manual

d
vedil/Git-Example
~ FETCH_H)
-~ origin/
lay wvour work on top of it...
dited by user
¢ info to reconstruct
. html
ck to patching bas
i html

then run "gi ; --continue”.
run “git r p".
te before "git re ", run "git rebase --abort”

In the given output, git rebase command is used to pull the repository from the remote
URL. Here, it will show the error message like merge conflict in <filename>.

5.1 Resolve Conflict:

Toresolve the conflict, it is necessary to know whether the conflict occurs and why it occurs.
Git merge tool command is used to resolve the conflict. The merge command is used as

follows:
1. S git mergetool

In my repository, it will result in:

164 | Version control — Trainee Manual

Eheadll

<body> <body= <body=
<titlex> This j| C
<hl=> Git 1

</head=
il l':H:l d}." s i l':H:l |:|}" . il I'J|:| d}" .

<head=

<ho Ij}" o

«title> This iz a G

E<<<<<< HEAD

<k Git 15 a version control</hl=

al] l'Jlj |:| }." S

index. htm]l [dos] (12:47 26/09,/2013) 4,1 All

"index. html"” [dos1 101, 201C

The above output shows the status of the conflicted file. To resolve the conflict, enter in
the insert mode by merely pressing | key and make changes as you want. Press the Esc key,
to come out from insert mode. Type the: w! at the bottom of the editor to save and exit
the changes. To accept the changes, use the rebase command. It will be used as follows:

1. S git rebase --continue

Hence, the conflict has resolved. See the below output:

165|Version control — Trainee Manual

$ git rebas
Applying:

s | 124.00 KiB/s, done.

ompleted with 1 local object.

In the above output, the conflict has resolved, and the local repository is synchronized with
a remote repository.

To see that which is the first edited text of the merge conflict in your file, search the file
attached with conflict marker <<<<<<<. You can see the changes from the HEAD or base
branch after the line <<<<<<< HEAD in your text editor. Next, you can see the divider
like =======. It divides your changes from the changes in the other branch, followed by
>>>>>>> BRANCH-NAME. In the above example, userl wrote "<h1> Git is a version
control</h1>" in the base or HEAD branch and user2 wrote "<h2> Git is a version
control</h2>".

Decide whether you want to keep only your branch's changes or the other branch's
changes, or create a new change. Delete the conflict markers <<<<<<g, ======s,
>>>>>>> and create final changes you want to merge.

g

Points to Remember

e The ‘git rebase’ command in Git allows you to reapply a series of commits on top of a
nother base commit, effectively moving the entire branch to begin from the tip of an
other branch. Key operations involved in using “git rebase’ include starting a rebase,R
esolve Conflicts,Continue Rebase,Abort Rebase,Skip Commits,Skip Commits.

e To merge branches on a remote repository in Git, you typically follow these steps:
1.Fetch Remote Changes
2. Checkout the Target Branch
3.Merge the Branch
4.Push Changes to Remote Repository

166 | Version control — Trainee Manual

@Eﬂ

MyApp is a web application project targeted at enhancing the user authentication procedure

Application of learning 3.3.

that is being worked on by a team of developers. The following actions were carried out by
the appropriate team members. The developer, John, used the "git rebase" command to
merge the most recent modifications from the main branch into his feature branch, ensuring
that his improvements were based on the most recent codebase. Sarah, the team leader,
issued a pull request to merge John's branch into the main branch, allowing for easier
collaboration and review. This enabled the team to handle the issue as a whole and confirm
that the proposed solution was in line with the project's goals and criteria. Finally, after
reading and approving “this is merging exercise” pull request, David as project manager use
the merge procedure, thereby Implementing the upgraded user authentication feature
properly and contributing to the overall solution of improving the application's security and
user experience.

167 |Version control — Trainee Manual

— T ——

ﬂ £
L, E@ Learning outcome 3 end assessment

Theoretical assessment

1. Which of these Git client commands creates a copy of the repository and a working

directory in the client’s workspace. (Choose one.)

a) update

b) checkout

c) clone

d) import

e) None of the above

2. True or False? In Git, if you want to make your local repository reflect changes that have

been made in a remote (tracked) repository, you should run the pull command.

a) True
b) False

3. Now, imagine that you have a local repository, but other team members have pushed

changes into the remote repository. What Git operation would you use to download those

changes into your working copy?

a) checkout
b) commit
c) export
d) pull

e) update
f) a,b,andc

4. fill-in-the-blank space related to fetching, pulling, and pushing files in Git

a)

b)

c)

d)

f)

g)

h)

To fetch changes from a remote repository without merging them into your local

branch, you use the command "git

To fetch changes from a remote rep05|tory and merge them into your local branch,

you use the command “git

To upload your local repository changes to a remote repository, you use the command

‘git origin <branch-name>".

To see the status of your local repository, including which branch you are on and any

changes that are staged for commit, you use the command “git "

To add all changes in your working directory to the staging area, you use the command

“git .

To commit your staged changes with a message, you use the command ‘git
-m "Your commit message"”

To create a connection to a new remote repository, you use the command “git remote
<name> <URL>".

To view the details of your remote repository connections, you use the command “git

remote ’

168 | Version control — Trainee Manual

5. Match the operations with corresponding commands

Operation Command

Fetch changes from remote repository a. git fetch

Fetch and merge changes from remote b. git pull

Push changes to remote repository c. git push origin <branch-name>
See the status of the local repository d. git status
Add all changes to the staging area e. git add .

Commit staged changes with a message | f. git commit -m "Your commit message"

Create a connection to a remote repo g. git remote add <name> <URL>

Practical assessment

ABC Software Solutions is a leading software development company, Alex and Sarah are two
experienced developers who need to collaborate on a project aimed at resolving a critical bug
in a mission-critical software system for a major client. The bug has caused disruptions in the
client's operations, and immediate attention is required to rectify the issue. Alex takes on the
responsibility of simulating updates from the client and making changes to a separate branch
to identify the root cause of the bug. Additionally, Alex merges the client's changes into their
branch to test potential fixes and improve the overall stability of the system. Throughout the
process, Alex actively contributes by making modifications, committing them, and pushing
their branch to the remote repository, ensuring that the bug fixes are well-documented and
can be easily shared with the client. Sarah, an integral team member, communicates her
additional changes to Alex, addressing specific edge cases and proposing enhancements to
optimize the software system's performance. After pushing her branch to the remote
repository, Alex ensures synchronization by fetching Sarah's updated branch and merging it
into their own, incorporating the valuable contributions made by Sarah. ABC Software
Solutions demonstrates their commitment to providing high-quality software solutions and
meeting their client's critical needs by leveraging efficient collaboration, version control, and
code management practices to swiftly address and resolve complex problems in their client's
software systems.

169 | Version control — Trainee Manual

o
&‘ References

JavaTpoint. (n.d.). Git Pull. Retrieved from https://www.javatpoint.com/git-pull

JavaTpoint. (n.d.). Git Push. Retrieved from https://www.javatpoint.com/git-push

Varonis. (n.d.). Git Branching: A guide to working with branches. Retrieved from
https://www.varonis.com/blog/git-branching

TutorialsPoint. (n.d.). Git Managing Branches. Retrieved from
https://www.tutorialspoint.com/git/git managing branches.htm

Atlassian. (n.d.). Git Merge: Everything you need to know about merge in Git. Retrieved
from https://www.atlassian.com/git/tutorials/using-branches/git-merge

170 | Version control — Trainee Manual

https://www.javatpoint.com/git-pull
https://www.javatpoint.com/git-push
https://www.varonis.com/blog/git-branching
https://www.tutorialspoint.com/git/git_managing_branches.htm
https://www.atlassian.com/git/tutorials/using-branches/git-merge

5

RTB | Ve'soaro

October , 2024

