7 e

Republic of Rwanda T RWANDA
Ministry of Education R B I TVET BOARD

Integrate Embedded Systems Software

Learning Hours:

80

ICT and Multimedia

Software Programming and Embedded Systems

Specific Module

ICTSES4002 TVET Certificate IV in Software Programming
and Embedded Systems

© Rwanda TVET Board, 2023




The purpose of this module is to equip learners with comprehensive
knowledge and practical skills in embedded systems, spanning from
firmware development to deployment. Through a holistic approach,
this module aims to cultivate a deep understanding of embedded
systems architecture, sensor integration, actuator control, and their
seamless integration into the Internet of Things ecosystem. Learners
Purpose will gain hands-on experience in designing, programming, and
statement L . .
optimizing embedded systems firmware, while also exploring
strategies for efficient deployment in real-world applications. By the
end of this module, participants will be proficient in developing,
interfacing, and deploying embedded systems, positioning them to
tackle contemporary challenges and innovations in the field of IoT
and embedded technology.
-  Embedded Systems Hardware Design
Learning - Networking Fundamentals
assumed to be in - Web APIs
place - Applied physics I (LU4-Digital electronics)
- Fundamentals of programming with c/c++
Training delivery 100% Assessment
Theoretical content 30% 30%
Practical work:
; Grou .
moduity | projectand | ao% aesesemont
presentation 70% 70%
Individual
project 40%
/Work
Summative 50%
Assessment




Elements of Competence and Performance Criteria

Elements of competence 7 Performance criteria
1.1. Firmware architecture diagrams are properly drawn

based on embedded system architecture

1.2. Development environment is correctly prepared based on
embedded platform specifications.

1.3. Resources are effectively optimized according to the
1. Develop Embedded performance requirement.

Systems Firmware

1.4. Real-time requirements are perfectly handled according
to the performance requirement.

1.5. Firmware Image is correctly exported in line with the
deployment requirement.

1.6. Firmware is properly documented according to the work
done

2.1. Hardware is properly selected based on the embedded
system requirement.

2.2. Data Flow Diagram is properly established based on the
2. Integrate Peripherals | embedded system requirement.
with the
Microcontroller 2.3. Hardware is properly connected to the microcontroller
based on the data flow diagram.

2.4. Communication code is properly written based on the
embedded system requirement.

3.1. Socket Programming is properly applied inline based on
the required data exchange.

3.2. IoT Networking is properly applied inline according to the
system requirement.

3. Communicate data

over the network 3.3. Errors occurring during data transmission are properly

handled following debugging procedures.

3.4. Web APIs are properly written to enable seamless
communication and interaction between IoT devices based on
the embedded system requirement.




Knowledge Skills Attitude
v’ Identify hardware v Create data flow diadram v Able to plan for the project
components v' Develop firmware v Use creativity and
v Describe the embedded (communication code) innovation throughout the
system structure v’ Install software design works
v’ Identify Design principals | v" Connect hardware v’ Pay attention projects
and techniques v" Apply socket programming details
v ldentify test types v" Apply loT networking v" Demonstrate punctuality
v’ Identify debug technics v Perform error handling during the implementation
v Identify and prepare the | v' Create design layout v Be resourcefulness in the
environment v' Write APIs new design trends
v Prepare design project v’ Patience

presentation

Course content

Learning outcomes

At the end of the module the learner will be able to:

1. Develop Embedded Systems Firmware
2. Integrate Peripherals with the Microcontroller

3. Communicate data over the network




Learning outcome 1:

Develop Embedded Learning hours: 24
Systems Firmware

Indicative content

Firmware Architecture Diagram Making:
Following elements are shown on the diagram:
v Microcontroller
v Peripherals
+ Sensors
+ Actuators
+ Communication modules
v Firmware Layers
+ Kernel
+ Drivers
+ Middleware
+ Application layers
v Interactions shown as arrowed lines representing data and control flow.
v External Interfaces

+ Ports
+ Connectors
+ Communication protocols

Preparation of Firmware Development Environment:
v IDE Selection depending on the microcontroller
+ Eclipse or
+ Keil or
+ IAR Embedded Workbench or
+ PlatformIO
v Toolchain Installation
Install the toolchain specific to the microcontroller
Make sure to include compilers
Make sure to include assemblers
Make sure to include debuggers
v Hardware Setup
+ Development board
+ Programmer/debugger
+ Any other necessary peripherals
v Version Control (e.g., Git) to manage the codebase
v Project Configuration
+ Build settings
+ Memory layout

+
+
+
+

Memory Usage Optimization in Firmware Development:
v Static Analysis
v Code Profiling
v Memory Pooling
v Data Compression
v Optimize Data Types
Power Consumption Optimization in Firmware Development:
v Low-Power Modes
v Peripheral Management
v Dynamic Voltage and Frequency Scaling




v Efficient Algorithms
v Interrupt-Based Design

e Real-Time Requirements Handling in Firmware Development:
v RTOS Selection for task scheduling

FreeRTOS

Micrium (now part of Silicon Labs)

NuttX

ChibiOS/RT

CMSIS-RTOS (e.g., Keil RTX)

TI-RTOS (formerly SYS/BIOS)

embOS

Zephyr

RIOT

ThreadX

FEFEEEEEEEE

v Priority Management

v Deadlock Prevention

v Timing Analysis

v Firmware Image Exportation:
+ Programming Tools
+ Bootloaders
+ Image Signing

¢ Firmware Documentation
v Code Comments
v API Documentation
v User Manuals
v Version History
v Schematics and Diagrams

Resources required for the learning outcome

Microcontroller Development Board
Programmer/Debugger Hardware

Development Computer

Equipment Peripherals (Sensors, actuators, communication modules)
External Interfaces like USB for programming/debugging
Hardware for hardware schematics (e.g., circuit design
tools)

IDE (Integrated Development Environment) Software (e.g.,
Eclipse, Keil, IAR Embedded Workbench, PlatformIO)

Toolchain (compilers, assemblers, debuggers)
Project-specific Configurations

Static Analysis Tools (e.g., Lint)

Code Profiling Tools

Custom Memory Management Code

Materials




Data Compression Techniques (e.g., run-length encoding)

Real-Time Operating System (RTOS) Software (e.g.,
FreeRTOS, Micrium)

Priority Assignment Guidelines

Synchronization Mechanisms Design Guidelines
User Manual Documentation

Version History/Changelog

Documentation Templates

Memory Usage Optimization Tools (e.g., memory analysis
tools)

Power Consumption Optimization Tools
Interrupt-Based Design Guidelines
Timing Analysis Tools

Bootloaders (for firmware updates)
Image Signing Tools (for security)

Code Commenting Guidelines

API Documentation Guidelines
Effective Documentation Practices
Version Control System (e.g., Git)
Debugging Tools provided by the microcontroller
manufacturer

Demonstration and simulation
Practical exercise

Individual work

Trainer-guided

Group discussion

Oral assessment

Written assessment

Practical assessment

Tools

Facilitation techniques

Formative assessment
methods /(CAT)

S<L|]vVvVvVvVvy

Learning outcome 2: Integrate Peripherals Learning hours: 32

with the Microcontroller

Indicative content

e Hardware Selection for an Embedded System
v Microcontroller/Processor
+ Power consumption
+ Cost
+ Ecosystem support

v Power Supply:
+ Voltage levels
+ Current capacity
+ Energy efficiency




v Sensors and Actuators

* Identify sensors (e.g., temperature sensors, accelerometers, ...)
* Identify Actuators (e.g., motors, relays, ...)
v Communication Interfaces
* UART
* SPI

* I2C
* Ethernet
* Any other suitable communication interface

v Additional Peripherals
+ Displays
+ Input devices

+ WiFi Communication modules (e.g., Wi-Fi, Bluetooth)
v Environmental Considerations
+ HumidityShock resistance
+ Cost and Availability

* Scalability
e Data Flow Diagram

v Processes

- Data Flow
- Data Stores
v Entities
+ Internal
+ External
v Data Flow Labels
+ Identification of data type
+ Data format
- Directions
v Context Diagram
v' Leveling

e Connecting Peripherals to the Microcontroller
v Pin Selection

* Wiring
+ Power Supply
+ Pull-up/Pull-down Resistors

v Clock Configuration
v Initialization

e Code to Make Communication Between Microcontroller and Peripherals
v Select the Communication Protocol

+ Identify the Microcontroller Pins

+ Initialize the Communication Interface

+ Implement Communication Functions
v Main Program

+ Censors

+ Configure Peripheral
v Testing and Debugging

+ Error Handling

+ Optimization

v Safety and Reliability




v Documentation

Equipment

Microcontroller /Processor

Power Supply

Sensors and Actuators

Communication Interfaces

Peripherals

Environmental Testing Equipment

Budget and Supplier Information
Whiteboard or Paper

Marker or Pen

Diagram Drawing Software

Wires and Cables

Multimeter

Resistors

Computer with Development Environment
USB Cable for Microcontroller Programming
Debugging Tools (e.g., oscilloscope, logic analyzer)
Documentation Tools

Materials

Lecture Slides and Presentations

Textbooks and Reference Materials

Code Examples

Online Resources (e.g., tutorials, documentation, forums)
Hands-on Lab Exercises and Projects (with instructions)

Safety Guidelines and Documentation

Data Sheets and Datasheets for Microcontrollers and Components

Microcontroller and Peripheral Hardware Documentation (e.g., user
manuals)

Example Code Snippets (for communication protocols)
Sample Hardware Selection Case Studies
Assessment Tools (e.g., quizzes, assignments)

Tools

Diagram Drawing Software (for data flow diagrams)
Documentation Templates
Simulation Software (if applicable)

Facilitation
techniques

VVYYV

Demonstration and simulation
Practical exercise

Individual work
Trainer-guided




Group discussion

Formative
assessment
methods /(CAT)

AN NN %

Oral assessment
Written assessment
Practical assessment




Learning outcome 3: Communicate data
over the network

Learning hours: 24hrs

Indicative content

e Network Socket Programming basics:

v Network Socket Creation
#+ Data Transmission: TCP, UDP
+ WebSocket Basics
+ WebSocket Protocol

v Binding and Addressing

Server-Client Model

Host machine

Specific IP address and port number
Error Handling

Network Socket Closing
Real-Time Communication

v Security and Best Practices

FEEEERE

e IoT Networking:

v Low-Power Protocols

+ IoT devices

+ Communication protocols
v Wireless Technologies

+ Types of wireless

4+ Advantage and disadvantages
v' IPv6 Adoption
v Mesh Networking

+ Advantages

+ Connectivity between devices
v Edge Computing
v Security

4+ Security measures

4+ Security procedures

e Techniques to Handle Errors During Data Transmission:

v' Error Detection and Correction
+ Error identification
+ Error detection methods
4+ Implementation of error detection
4+ Retry Strategies
v Acknowledgement and Retransmission
+ Automatic repeat request (ARQ)
+ Identify network protocol
+ Timeouts
4+ Flow Control




e Web APIs for IoT Communication:

v RESTful APIs
+ REST methods
+ Data Formats (JSON and XML)
+ Endpoints and Resources

v' Security measures
+ Authentication
4+ Authorization
+ Attacks
+ Error Handling
+ Rate Limiting
v Documentation
4+ Purpose and structure
4+ Tools

Resources required for the Learning outcome

Networking Equipment (e.g., computers or Raspberry Pi devices for
hands-on socket programming, computers or servers to host and test
Equipment APIs, Wi-Fi routers, switches, IoT development boards)

IoT Devices and Sensors (e.g., Raspberry Pi, Arduino, IoT sensors)
Simulation Hardware (if physical IoT network simulation is used)

Lecture Slides

Textbooks on Socket Programming (e.g., "Python Network Programming"
by Dr. M. O. Faruque Sarker)

Code Examples (Python socket programming code samples)

Security Tools (OpenSSL for encryption)

Assessment Tools (Socket programming coding exercises)

Materials Simulation Software (e.g., IoT network simulation software like Contiki)
Online Resources (Links to socket programming tutorials)

Assessment Tools (IoT project assignments)

Simulation Software (e.g., Network simulators like NS-3)

Code Examples (Error handling code samples in Python)

Assessment Tools (Error handling coding challenges)

Programming Environments (e.g., IDEs like Visual Studio Code,
PyCharm)

Online Resources (e.g., tutorials, documentation, forums)
Assessment Tools (e.g., quizzes, assignments)

WebSocket Server Software (e.g., Node.js WebSocket library)
Development Tools (e.g., Postman, Swagger)

API Documentation Tools

Tools




Error Handling Code Examples
IoT Development Tools (e.g., Arduino IDE, Raspberry Pi tools)
IoT Simulation Hardware (if physical IoT network simulation is used)

» Demonstration and simulation
> Practical exercise

Facilitation > Individual work
techniques . .
» Trainer-guided
» Group discussion
Formative v Oral assessment
assessment v Written assessment
methods /(CAT v Practical assessment

Integrated/Summative assessment (For specific module)

Integrated situation

Step into the dynamic world of ABC Electronics, a rising startup committed to crafting
innovative home automation products. At the heart of this venture lies an exciting project—
an intelligent environmental monitoring and security system. While the circuit design stands
firm, the bridge between hardware and functionality is yet to be built. As the appointed
firmware developer, the mission is to orchestrate the symphony of code that harmonizes
seamlessly with the system hardware. the task is to craft a software solution that embraces
indoor temperature and humidity monitoring while capturing images upon detecting motion.
The code will not only enhance user experiences but also create a haven of optimal living
conditions. The grand stage awaits the mastery in firmware development.

Develop firmware for real-time indoor temperature and humidity monitoring, displaying on
LCD. Enable remote server access for data tracking. Create motion-triggered image capture
firmware with remote server access for storage and user alerts.Craft robust code for sensor
anomalies and communication, integrating remote server access for error reporting and
diagnostics.

Resources
Wire Strippers and Cutters
Crimping Tool
Hand Tools (e.g., screwdrivers, pliers)
Safety Equipment (e.g., safety glasses, gloves)
Power Supply Unit (PSU)
Voltage Regulators
Storage Medium (e.g., SD Card)
Enclosure
Mounting Hardware
Hot Air Rework Station
3D Printer
Oscilloscope Probes
Electrostatic Discharge (ESD) Protection
Bench Power Supply
Heat Shrink Tubing and Electrical Tape
Breadboard Jumpers
PCB Design Software and Services
Wire Labels and Cable Management

Tools

Equipment

Materials/ Consumables




Assessable
outcomes

Assessment criteria
(Based on

performance
criteria)

Indicator

Observation
Marks

Yes I\[e} allocation

C or C++ Programming 1
Analysis of Firmware Language is selected
requirements IDE is selected 1
p ) ¢ Documenting tool is 1
Drepsilrmg 0 ¢ selected
evelopmen - :
environment Diagramming Tools 1
' IDE is configured 2
Learning Selecting of Tools,
outcome 1: . . .
Desi materials and Diagramming Tools 1
- es1gn equipment
Firmware r " I Flow
Architectur - unctionar -0 2
) ) Diagram (flowchart)
€ Drawing of Firmware , ,
(20%) architecture Architecture Diagram. 2
diagrams Data Flow and
Communication 2
(Sequence Diagram)
Use case 1
Documentation of components of firmware
. . 1
firmware architecture architecture
User guide 1
Preparation of LDC ports are configured 4
Development
Enwror‘lmen.t Flashing tool is installed 4
xporting Firmware
Image
12C 2
Learning . Spi Communication
outcome 2: Iéqtegratlo_n ?Ef modulus 2
Implement ommunication wifi 5
Protocols -
firmware Integration of 9
system communication protocols
design. Initialization 2
(64%) Data Acquisition 2
Data Processing ( image
. 2
Implementation of capture)
firmware modules Control (motion
. 2
detection)
Communication (protocol 9
motion)




Memory Management 9
(optimization )
RTOS 2
Interrupt Handler 9
Module
Power Management
2
(sleep mode)
Performance of EEPROM management 2
memory Designing the own API 2
management
in Embedded Mapping Memory with 5
C. Pointers
Temperature is displayed 1
in °C
Humidity is displayed in
Writing Yo
Firmware High Temperature alert 5
source codes is configured
motion-triggered 1
image capture 2
Low Temperature alert is
configured 3
Preparation of
Deployment Flashing tool is installed 2
Learning environment
Outcome 3: Exporting .hex file for the firmware 4
Deploy Firmware is created
Firmware Image The firmware is flashed 4
Documentation tool is 9
(15%) Documentatio installed
n of Firmware Documentation tool is 2
configured
Total marks 79
Percentage Weightage 100%

Minimum Passing line % (Aggregate): 70%




References:

Spiceworks. (2022, October 10). What is Firmware? Architecture and
Best Practices.
https:/ /www.spiceworks.com/tech /devops/articles/what-is-firmware/

Berg, H. K., Rao, P., & Shriver, B. D. (1982). Firmware quality assurance.
National Computer Conference.
https://doi.org/10.1145/1500774.1500776

IEEE Conference Publication | IEEE Xplore. (2016, March 1). Verifying
information flow properties of firmware using symbolic execution.
https:/ /ieeexplore.ieee.org/abstract/document/7459333/

Al-Hammouri, A. T. (2012). A comprehensive co-simulation platform for
cyber-physical systems. Computer Communications, 36(1), 8-19.
https://doi.org/10.1016/j.comcom.2012.01.003

Beghi, A., Marcuzzi, F., & Rampazzo, M. (2016). A virtual laboratory for
the prototyping of Cyber-Physical systems. IFAC-PapersOnlLine.
https://doi.org/10.1016/j.ifac0l.2016.07.154

Baheti, R., & Gil, H. (2011). Cyber-physical Systems. Google Scholar.
https://scholar.google.com /scholar_lookup?title=Cyber-
physical%20Systems&publication_vear=2011&author=R.%20Baheti&aut
hor=H.%20Gil

Di Matematica “Tullio Levi-Civita” - Dm, D. (2014). Computing from
LaTeX: automated numerical computing from LaTeX expressions.
http://paduaresearch.cab.unipd.it/6930/

Beghi, A., Marcuzzi, F., & Rampazzo, M. (2016). A virtual laboratory for
the prototyping of Cyber-Physical systems. IFAC-PapersOnlLine.
https://doi.org/10.1016/j.ifacol.2016.07.154

Qt Company. (n.d.). Embedded Software Programming Languages: pros,
cons, and comparisons of popular languages.
https://www.qt.io/embedded-development-talk /embedded-software-
programming-languages-pros-cons-and-comparisons-of-popular-
languages

Udemy. (2023, January). An Introduction to the Fundamentals of
Firmware Engineering for Embedded Systems.



https://www.spiceworks.com/tech/devops/articles/what-is-firmware/
https://www.spiceworks.com/tech/devops/articles/what-is-firmware/
https://www.spiceworks.com/tech/devops/articles/what-is-firmware/
https://doi.org/10.1145/1500774.1500776
https://doi.org/10.1145/1500774.1500776
https://doi.org/10.1145/1500774.1500776
https://ieeexplore.ieee.org/abstract/document/7459333/
https://ieeexplore.ieee.org/abstract/document/7459333/
https://ieeexplore.ieee.org/abstract/document/7459333/
https://doi.org/10.1016/j.comcom.2012.01.003
https://doi.org/10.1016/j.comcom.2012.01.003
https://doi.org/10.1016/j.comcom.2012.01.003
https://doi.org/10.1016/j.ifacol.2016.07.154
https://doi.org/10.1016/j.ifacol.2016.07.154
https://doi.org/10.1016/j.ifacol.2016.07.154
https://scholar.google.com/scholar_lookup?title=Cyber-physical%20Systems&publication_year=2011&author=R.%20Baheti&author=H.%20Gil
https://scholar.google.com/scholar_lookup?title=Cyber-physical%20Systems&publication_year=2011&author=R.%20Baheti&author=H.%20Gil
https://scholar.google.com/scholar_lookup?title=Cyber-physical%20Systems&publication_year=2011&author=R.%20Baheti&author=H.%20Gil
https://scholar.google.com/scholar_lookup?title=Cyber-physical%20Systems&publication_year=2011&author=R.%20Baheti&author=H.%20Gil
https://scholar.google.com/scholar_lookup?title=Cyber-physical%20Systems&publication_year=2011&author=R.%20Baheti&author=H.%20Gil
http://paduaresearch.cab.unipd.it/6930/
http://paduaresearch.cab.unipd.it/6930/
http://paduaresearch.cab.unipd.it/6930/
https://doi.org/10.1016/j.ifacol.2016.07.154
https://doi.org/10.1016/j.ifacol.2016.07.154
https://doi.org/10.1016/j.ifacol.2016.07.154
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB

https://www.udemy.com/course/firmware-

engineering/?amp=&aff code=Ewh3Y1IWOH8FORI93MkBPbG1RGXF{fW1
h8B14ZeUSTQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&u
tm_source=adwords&utm medium=udemvads&utm campaign=DSA_Cat
chall la.EN_cc.ROW&utm_content=deal4584&utm_term=_. ag 8801021
1481 . ad 535397282064 . kw . de c .dm . pl . ti dsa-
52949608673 . 1i_1012087 . pd__. &matchtype=&gclid=CjOKCQjw2qK
mBhCfARIsAFy8bulG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tE
bOSaN7IgSeUaAvBgqEALw_wcB

S5V Media. (2022, September 28). Blog - 4 Communication protocols
embedded engineers should know.

https:/ /www.weare5vmedia.com/media/communication-protocols-for-
an-embedded-engineer-to-know

Neil’s Log Book. (n.d.). Lab Guide: Embedded Memory Management.
https:/ /nrgm.ca/nrgm.ca/mechatronics-lab-guide /lab-guide-embedded-
memory-management/index.html

Cyrille, C., Dross, C., Gilcher, F., & Moy, Y. (n.d.). Dynamic Memory
Management in Critical Embedded Software.

Beningo, J. (2013, January 10). Building reusable device drivers for
microcontrollers. Embedded.com. https:/ /www.embedded.com /building-
reusable-device-drivers-for-microcontrollers /

Tutorialspoint. (n.d.). C - Memory management.
https:/ /www.tutorialspoint.com/cprogramming/c_memory_management
.htm

GeeksforGeeks. (2022). Memory layout of C programs.
https:/ /www.geeksforgeeks.org/memory-layout-of-c-program/

Gupta, E. (2022, February 28). Memory Layout in C - Scaler topics.
Scaler Topics. https:/ /www.scaler.com /topics/c/memory-layout-in-c/

Mathew, H. (2022, October 12). The Complete Guide To Embedded
Firmware Development. Live Positively.
https://technocore360.livepositively.com /the-complete-guide-to-
embedded-firmware-development/



https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.weare5vmedia.com/media/communication-protocols-for-an-embedded-engineer-to-know
https://www.weare5vmedia.com/media/communication-protocols-for-an-embedded-engineer-to-know
https://www.weare5vmedia.com/media/communication-protocols-for-an-embedded-engineer-to-know
https://www.weare5vmedia.com/media/communication-protocols-for-an-embedded-engineer-to-know
https://nrqm.ca/nrqm.ca/mechatronics-lab-guide/lab-guide-embedded-memory-management/index.html
https://nrqm.ca/nrqm.ca/mechatronics-lab-guide/lab-guide-embedded-memory-management/index.html
https://nrqm.ca/nrqm.ca/mechatronics-lab-guide/lab-guide-embedded-memory-management/index.html
https://nrqm.ca/nrqm.ca/mechatronics-lab-guide/lab-guide-embedded-memory-management/index.html
https://www.embedded.com/building-reusable-device-drivers-for-microcontrollers/
https://www.embedded.com/building-reusable-device-drivers-for-microcontrollers/
https://www.embedded.com/building-reusable-device-drivers-for-microcontrollers/
https://www.tutorialspoint.com/cprogramming/c_memory_management.htm
https://www.tutorialspoint.com/cprogramming/c_memory_management.htm
https://www.tutorialspoint.com/cprogramming/c_memory_management.htm
https://www.tutorialspoint.com/cprogramming/c_memory_management.htm
https://www.geeksforgeeks.org/memory-layout-of-c-program/
https://www.geeksforgeeks.org/memory-layout-of-c-program/
https://www.geeksforgeeks.org/memory-layout-of-c-program/
https://www.scaler.com/topics/c/memory-layout-in-c/
https://www.scaler.com/topics/c/memory-layout-in-c/
https://technocore360.livepositively.com/the-complete-guide-to-embedded-firmware-development/
https://technocore360.livepositively.com/the-complete-guide-to-embedded-firmware-development/
https://technocore360.livepositively.com/the-complete-guide-to-embedded-firmware-development/
https://technocore360.livepositively.com/the-complete-guide-to-embedded-firmware-development/

Xukyo. (2021). Generating and uploading HEX files to an Arduino.
AranaCorp. https:/ /www.aranacorp.com/en/generating-and-uploading-
hex-files-to-an-arduino/

Arduino Forum. (2017, August 8). Creating a flashable *.hex-file from a
C-Source using the arduino tools. https://forum.arduino.cc/t/creating-
a-flashable-hex-file-from-a-c-source-using-the-arduino-tools /473620/11



https://www.aranacorp.com/en/generating-and-uploading-hex-files-to-an-arduino/
https://www.aranacorp.com/en/generating-and-uploading-hex-files-to-an-arduino/
https://www.aranacorp.com/en/generating-and-uploading-hex-files-to-an-arduino/
https://forum.arduino.cc/t/creating-a-flashable-hex-file-from-a-c-source-using-the-arduino-tools/473620/11
https://forum.arduino.cc/t/creating-a-flashable-hex-file-from-a-c-source-using-the-arduino-tools/473620/11
https://forum.arduino.cc/t/creating-a-flashable-hex-file-from-a-c-source-using-the-arduino-tools/473620/11

Glossary

Purpose Statement: A statement that defines the objectives and goals of a
module or course.

Embedded Systems: Systems that consist of hardware and software designed
for specific functions within a larger system.

Firmware Development: The process of creating software that is permanently
programmed into a hardware device, typically an embedded system.
Deployment: The process of making software or hardware available for use in a
real-world environment.

IoT (Internet of Things): A network of interconnected physical devices or
objects that can communicate and exchange data over the internet.

Learning Assumed to be in Place: The foundational knowledge and skills that
learners are expected to have before taking the module.

Delivery Modality: The method or approach used to deliver training, such as
in-person training, online courses, etc.

Assessment: The process of evaluating a learner's performance or
understanding of the material.

Theoretical Content: The portion of the module that focuses on theoretical
knowledge.

Formative Assessment: Ongoing assessments used to provide feedback to
learners and improve their understanding.

Practical Work: Hands-on exercises or projects that allow learners to apply
their knowledge.

Group Project and Presentation: Collaborative projects that involve multiple
learners working together.

Individual Project/Work: Independent work or projects undertaken by
individual learners.

Summative Assessment: A final assessment used to evaluate a learner's
overall understanding and performance.

Elements of Competence: Specific skills or abilities that learners are expected
to develop.

Performance Criteria: Criteria used to measure a learner's achievement of
competence in a particular area.

Firmware Architecture: The structure and organization of software code for
embedded systems.

IDE (Integrated Development Environment): A software application that
provides comprehensive facilities for software development.

Toolchain: A set of programming tools used for building software for a specific
target platform.

RTOS (Real-Time Operating System): An operating system designed for real-
time applications that require precise timing and control.

Socket Programming: The use of software sockets to enable communication
between computers or devices over a network.




Web APIs (Application Programming Interfaces): Interfaces that allow
different software applications to communicate with each other over the
internet.

Data Flow Diagram: A visual representation of how data flows within a system
Or Process.

Microcontroller: A small computer on a single integrated circuit used in
embedded systems.

Communication Protocols: Standard rules and conventions for data
communication between devices.

HTTP (Hypertext Transfer Protocol): The protocol used for transferring data
on the World Wide Web.

WebSockets: A communication protocol that enables bidirectional, real-time
communication between clients and servers.

IoT Networking: Networking technologies and protocols used in the Internet of
Things.

MQTT (Message Queuing Telemetry Transport): A lightweight, publish-
subscribe messaging protocol designed for low-bandwidth, high-latency, or
unreliable networks.

CoAP (Constrained Application Protocol): A protocol designed for resource-
constrained devices and networks in IoT applications.

LoRaWAN (Long Range Wide Area Network): A low-power, wide-area
networking protocol designed for long-range communication in IoT devices.
IPv6: The latest version of the Internet Protocol, designed to accommodate the
growing number of devices connected to the internet.

Mesh Networking: A network topology in which each node relays data for the
network.

Error Handling: The process of detecting, reporting, and managing errors in
software or hardware.

API Documentation: Documentation that explains how to use an API,
including endpoints, data formats, and authentication.

Demonstration and Simulation: Teaching techniques that involve showing or
simulating how something works.

Practical Exercise: Hands-on activities that reinforce theoretical learning.
Individual Work: Independent work or assignments completed by individual
learners.

Trainer-Guided: Learning activities facilitated by an instructor or trainer.
Formative Assessment Methods (CAT): Continuous assessment methods used
to monitor learner progress.

Integrated/Summative Assessment: A final assessment that evaluates overall
learning outcomes.

Aggregate: The total or combined result or percentage.




