

 Embedded Systems Software Integration

Integrate Embedded Systems Software

Competence

SPEES402

RQF Level: 4 Learning Hours:

Credits: 8 80

Sector: ICT and Multimedia

Trade: Software Programming and Embedded Systems

Module Type: Specific Module

Curriculum: ICTSES4002 TVET Certificate IV in Software Programming

and Embedded Systems

Copyright: © Rwanda TVET Board, 2023

1200 Issue Date: August 2023

Purpose
statement

The purpose of this module is to equip learners with comprehensive

knowledge and practical skills in embedded systems, spanning from

firmware development to deployment. Through a holistic approach,

this module aims to cultivate a deep understanding of embedded

systems architecture, sensor integration, actuator control, and their

seamless integration into the Internet of Things ecosystem. Learners

will gain hands-on experience in designing, programming, and

optimizing embedded systems firmware, while also exploring

strategies for efficient deployment in real-world applications. By the

end of this module, participants will be proficient in developing,

interfacing, and deploying embedded systems, positioning them to

tackle contemporary challenges and innovations in the field of IoT

and embedded technology.

Learning

assumed to be in

place

- Embedded Systems Hardware Design
- Networking Fundamentals
- Web APIs
- Applied physics I (LU4-Digital electronics)
- Fundamentals of programming with c/c++

Delivery

modality

Training delivery 100% Assessment
Total
100%

Theoretical content 30%

Formative
assessment

30%

50%

Practical work:

70% 70%

Group
project and
presentation

30%

Individual
project
/Work

40%

Summative
Assessment

50%

Elements of Competence and Performance Criteria

Elements of competence Performance criteria

1. Develop Embedded
Systems Firmware

1.1. Firmware architecture diagrams are properly drawn

based on embedded system architecture

1.2. Development environment is correctly prepared based on
embedded platform specifications.

1.3. Resources are effectively optimized according to the
performance requirement.

1.4. Real-time requirements are perfectly handled according
to the performance requirement.

1.5. Firmware Image is correctly exported in line with the
deployment requirement.

1.6. Firmware is properly documented according to the work
done

2. Integrate Peripherals
with the
Microcontroller

2.1. Hardware is properly selected based on the embedded
system requirement.

2.2. Data Flow Diagram is properly established based on the
embedded system requirement.

2.3. Hardware is properly connected to the microcontroller
based on the data flow diagram.

2.4. Communication code is properly written based on the
embedded system requirement.

3. Communicate data
over the network

3.1. Socket Programming is properly applied inline based on
the required data exchange.

3.2. IoT Networking is properly applied inline according to the
system requirement.

3.3. Errors occurring during data transmission are properly
handled following debugging procedures.

3.4. Web APIs are properly written to enable seamless
communication and interaction between IoT devices based on
the embedded system requirement.

Intended Knowledge, Skills and Attitude

Knowledge Skills Attitude

✓ Identify hardware

components

✓ Describe the embedded

system structure

✓ Identify Design principals

and techniques

✓ Identify test types

✓ Identify debug technics

✓ Identify and prepare the

environment

✓ Create data flow diadram

✓ Develop firmware

(communication code)

✓ Install software

✓ Connect hardware

✓ Apply socket programming

✓ Apply IoT networking

✓ Perform error handling

✓ Create design layout

✓ Write APIs

✓ Prepare design project

presentation

✓ Able to plan for the project

✓ Use creativity and

innovation throughout the

design works

✓ Pay attention projects

details

✓ Demonstrate punctuality

during the implementation

✓ Be resourcefulness in the

new design trends

✓ Patience

Course content

Learning outcomes

At the end of the module the learner will be able to:

1. Develop Embedded Systems Firmware

2. Integrate Peripherals with the Microcontroller

3. Communicate data over the network

Learning outcome 1:
Develop Embedded
Systems Firmware

Learning hours: 24

Indicative content

● Firmware Architecture Diagram Making:
Following elements are shown on the diagram:

✔ Microcontroller

✔ Peripherals

 Sensors

 Actuators

 Communication modules

✔ Firmware Layers

 Kernel

 Drivers

 Middleware
 Application layers

✔ Interactions shown as arrowed lines representing data and control flow.

✔ External Interfaces

 Ports
 Connectors

 Communication protocols

● Preparation of Firmware Development Environment:
✔ IDE Selection depending on the microcontroller

 Eclipse or
 Keil or

 IAR Embedded Workbench or

 PlatformIO

✔ Toolchain Installation

 Install the toolchain specific to the microcontroller

 Make sure to include compilers

 Make sure to include assemblers

 Make sure to include debuggers

✔ Hardware Setup

 Development board
 Programmer/debugger

 Any other necessary peripherals

✔ Version Control (e.g., Git) to manage the codebase

✔ Project Configuration

 Build settings

 Memory layout

● Memory Usage Optimization in Firmware Development:

✔ Static Analysis

✔ Code Profiling

✔ Memory Pooling

✔ Data Compression

✔ Optimize Data Types

● Power Consumption Optimization in Firmware Development:

✔ Low-Power Modes

✔ Peripheral Management

✔ Dynamic Voltage and Frequency Scaling

✔ Efficient Algorithms

✔ Interrupt-Based Design

● Real-Time Requirements Handling in Firmware Development:

✔ RTOS Selection for task scheduling

 FreeRTOS

 Micrium (now part of Silicon Labs)

 NuttX

 ChibiOS/RT

 CMSIS-RTOS (e.g., Keil RTX)

 TI-RTOS (formerly SYS/BIOS)
 embOS

 Zephyr

 RIOT

 ThreadX

✔ Priority Management

✔ Deadlock Prevention

✔ Timing Analysis

✔ Firmware Image Exportation:

 Programming Tools

 Bootloaders

 Image Signing

● Firmware Documentation
✔ Code Comments

✔ API Documentation

✔ User Manuals

✔ Version History

✔ Schematics and Diagrams

Resources required for the learning outcome

Equipment

● Microcontroller Development Board

● Programmer/Debugger Hardware

● Development Computer

● Peripherals (Sensors, actuators, communication modules)

● External Interfaces like USB for programming/debugging

● Hardware for hardware schematics (e.g., circuit design

tools)

Materials

● IDE (Integrated Development Environment) Software (e.g.,

Eclipse, Keil, IAR Embedded Workbench, PlatformIO)

● Toolchain (compilers, assemblers, debuggers)

● Project-specific Configurations

● Static Analysis Tools (e.g., Lint)

● Code Profiling Tools

● Custom Memory Management Code

● Data Compression Techniques (e.g., run-length encoding)

● Real-Time Operating System (RTOS) Software (e.g.,

FreeRTOS, Micrium)

● Priority Assignment Guidelines

● Synchronization Mechanisms Design Guidelines

● User Manual Documentation

● Version History/Changelog

● Documentation Templates

Tools

● Memory Usage Optimization Tools (e.g., memory analysis
tools)

● Power Consumption Optimization Tools

● Interrupt-Based Design Guidelines

● Timing Analysis Tools

● Bootloaders (for firmware updates)

● Image Signing Tools (for security)

● Code Commenting Guidelines

● API Documentation Guidelines

● Effective Documentation Practices

● Version Control System (e.g., Git)

● Debugging Tools provided by the microcontroller
manufacturer

Facilitation techniques

⮚ Demonstration and simulation

⮚ Practical exercise

⮚ Individual work

⮚ Trainer-guided

⮚ Group discussion

Formative assessment
methods /(CAT)

✔ Oral assessment
✔ Written assessment
✔ Practical assessment

Learning outcome 2: Integrate Peripherals
with the Microcontroller

Learning hours: 32

Indicative content

● Hardware Selection for an Embedded System

✔ Microcontroller/Processor

 Power consumption

 Cost

 Ecosystem support

✔ Power Supply:

 Voltage levels
 Current capacity

 Energy efficiency

✔ Sensors and Actuators
 Identify sensors (e.g., temperature sensors, accelerometers, …)

 Identify Actuators (e.g., motors, relays, …)

✔ Communication Interfaces

 UART

 SPI

 I2C

 Ethernet

 Any other suitable communication interface

✔ Additional Peripherals

 Displays

 Input devices

 WiFi Communication modules (e.g., Wi-Fi, Bluetooth)

✓ Environmental Considerations

 HumidityShock resistance

 Cost and Availability
 Scalability

● Data Flow Diagram

✔ Processes

 Data Flow

 Data Stores
✓ Entities

 Internal

 External

✓ Data Flow Labels

 Identification of data type

 Data format
 Directions

✓ Context Diagram

✓ Leveling

● Connecting Peripherals to the Microcontroller

✔ Pin Selection

 Wiring
 Power Supply

 Pull-up/Pull-down Resistors

✔ Clock Configuration

✔ Initialization

● Code to Make Communication Between Microcontroller and Peripherals

✔ Select the Communication Protocol

 Identify the Microcontroller Pins

 Initialize the Communication Interface

 Implement Communication Functions

✔ Main Program

 Censors

 Configure Peripheral

✔ Testing and Debugging

 Error Handling

 Optimization

✔ Safety and Reliability

✔ Documentation

Equipment

● Microcontroller/Processor

● Power Supply

● Sensors and Actuators

● Communication Interfaces

● Peripherals

● Environmental Testing Equipment

● Budget and Supplier Information

● Whiteboard or Paper

● Marker or Pen

● Diagram Drawing Software

● Wires and Cables

● Multimeter

● Resistors

● Computer with Development Environment

● USB Cable for Microcontroller Programming

● Debugging Tools (e.g., oscilloscope, logic analyzer)

● Documentation Tools

Materials

● Lecture Slides and Presentations

● Textbooks and Reference Materials

● Code Examples

● Online Resources (e.g., tutorials, documentation, forums)

● Hands-on Lab Exercises and Projects (with instructions)

● Safety Guidelines and Documentation

● Data Sheets and Datasheets for Microcontrollers and Components

● Microcontroller and Peripheral Hardware Documentation (e.g., user

manuals)

● Example Code Snippets (for communication protocols)

● Sample Hardware Selection Case Studies

● Assessment Tools (e.g., quizzes, assignments)

Tools

● Diagram Drawing Software (for data flow diagrams)

● Documentation Templates

● Simulation Software (if applicable)

Facilitation
techniques

⮚ Demonstration and simulation

⮚ Practical exercise

⮚ Individual work

⮚ Trainer-guided

⮚ Group discussion

Formative
assessment

methods /(CAT)

✔ Oral assessment

✔ Written assessment

✔ Practical assessment

Learning outcome 3: Communicate data
over the network Learning hours: 24hrs

Indicative content

• Network Socket Programming basics:

✓ Network Socket Creation

 Data Transmission: TCP, UDP
 WebSocket Basics

 WebSocket Protocol

✓ Binding and Addressing

 Server-Client Model

 Host machine

 Specific IP address and port number
 Error Handling

 Network Socket Closing

 Real-Time Communication

✓ Security and Best Practices

• IoT Networking:

✓ Low-Power Protocols
 IoT devices

 Communication protocols

✓ Wireless Technologies

 Types of wireless

 Advantage and disadvantages
✓ IPv6 Adoption

✓ Mesh Networking

 Advantages

 Connectivity between devices

✓ Edge Computing

✓ Security
 Security measures

 Security procedures

• Techniques to Handle Errors During Data Transmission:

✓ Error Detection and Correction

 Error identification

 Error detection methods
 Implementation of error detection

 Retry Strategies

✓ Acknowledgement and Retransmission

 Automatic repeat request (ARQ)

 Identify network protocol

 Timeouts
 Flow Control

• Web APIs for IoT Communication:

✓ RESTful APIs

 REST methods

 Data Formats (JSON and XML)

 Endpoints and Resources

✓ Security measures

 Authentication

 Authorization

 Attacks

 Error Handling

 Rate Limiting

✓ Documentation

 Purpose and structure
 Tools

Resources required for the Learning outcome

Equipment

● Networking Equipment (e.g., computers or Raspberry Pi devices for

hands-on socket programming, computers or servers to host and test
APIs, Wi-Fi routers, switches, IoT development boards)

● IoT Devices and Sensors (e.g., Raspberry Pi, Arduino, IoT sensors)

● Simulation Hardware (if physical IoT network simulation is used)

Materials

● Lecture Slides

● Textbooks on Socket Programming (e.g., "Python Network Programming"

by Dr. M. O. Faruque Sarker)

● Code Examples (Python socket programming code samples)

● Security Tools (OpenSSL for encryption)

● Assessment Tools (Socket programming coding exercises)

● Simulation Software (e.g., IoT network simulation software like Contiki)

● Online Resources (Links to socket programming tutorials)

● Assessment Tools (IoT project assignments)

● Simulation Software (e.g., Network simulators like NS-3)

● Code Examples (Error handling code samples in Python)

● Assessment Tools (Error handling coding challenges)

Tools

● Programming Environments (e.g., IDEs like Visual Studio Code,

PyCharm)

● Online Resources (e.g., tutorials, documentation, forums)

● Assessment Tools (e.g., quizzes, assignments)

● WebSocket Server Software (e.g., Node.js WebSocket library)

● Development Tools (e.g., Postman, Swagger)

● API Documentation Tools

● Error Handling Code Examples

● IoT Development Tools (e.g., Arduino IDE, Raspberry Pi tools)

● IoT Simulation Hardware (if physical IoT network simulation is used)

Facilitation
techniques

⮚ Demonstration and simulation

⮚ Practical exercise

⮚ Individual work

⮚ Trainer-guided

⮚ Group discussion

Formative
assessment

methods /(CAT)

✔ Oral assessment
✔ Written assessment

✔ Practical assessment

Integrated/Summative assessment (For specific module)

Integrated situation
Step into the dynamic world of ABC Electronics, a rising startup committed to crafting
innovative home automation products. At the heart of this venture lies an exciting project—
an intelligent environmental monitoring and security system. While the circuit design stands
firm, the bridge between hardware and functionality is yet to be built. As the appointed
firmware developer, the mission is to orchestrate the symphony of code that harmonizes
seamlessly with the system hardware. the task is to craft a software solution that embraces
indoor temperature and humidity monitoring while capturing images upon detecting motion.
The code will not only enhance user experiences but also create a haven of optimal living
conditions. The grand stage awaits the mastery in firmware development.
Develop firmware for real-time indoor temperature and humidity monitoring, displaying on
LCD. Enable remote server access for data tracking. Create motion-triggered image capture
firmware with remote server access for storage and user alerts.Craft robust code for sensor
anomalies and communication, integrating remote server access for error reporting and
diagnostics.

Resources

Tools

● Wire Strippers and Cutters
● Crimping Tool
● Hand Tools (e.g., screwdrivers, pliers)
● Safety Equipment (e.g., safety glasses, gloves)

Equipment

● Power Supply Unit (PSU)
● Voltage Regulators
● Storage Medium (e.g., SD Card)
● Enclosure
● Mounting Hardware
● Hot Air Rework Station
● 3D Printer
● Oscilloscope Probes
● Electrostatic Discharge (ESD) Protection
● Bench Power Supply

Materials/ Consumables

● Heat Shrink Tubing and Electrical Tape
● Breadboard Jumpers
● PCB Design Software and Services
● Wire Labels and Cable Management

Assessable
outcomes

Assessment criteria
(Based on

performance
criteria)

Indicator

Observation
Marks

allocation Yes No

Learning
outcome 1:

Design
Firmware

Architectur
e

(20%)

Analysis of Firmware
requirements

Preparing of
Development
environment

C or C++ Programming
Language is selected

 1

IDE is selected 1

Documenting tool is

selected
 1

Diagramming Tools 1

IDE is configured 2

Selecting of Tools,
materials and
equipment

Diagramming Tools 1

Drawing of Firmware
architecture
diagrams

Functional Flow
Diagram(flowchart)

 2

Architecture Diagram. 2

Data Flow and
Communication

(Sequence Diagram)
 2

Documentation of
firmware architecture

Use case 1

components of firmware
architecture

 1

User guide 1

 Learning
outcome 2:
Implement

firmware

system

design.

(64%)

Preparation of
Development
environment
Exporting Firmware
Image

LDC ports are configured 4

Flashing tool is installed 4

Integration of
Communication
Protocols

I2C 2

Spi Communication
modulus

 2

wifi 2

Integration of
communication protocols

 2

Implementation of
firmware modules

Initialization 2

Data Acquisition 2

Data Processing (image
capture)

 2

Control (motion
detection)

 2

Communication (protocol
motion)

 2

Memory Management
(optimization)

 2

RTOS 2

Interrupt Handler
Module

 2

Power Management
(sleep mode)

 2

Performance of
memory
management
in Embedded
C.

 EEPROM management 2

Designing the own API 2

Mapping Memory with
Pointers

 2

Writing
Firmware
source codes

Temperature is displayed
in °C

 1

Humidity is displayed in
%

High Temperature alert
is configured

 2

motion-triggered 1

image capture 2

Low Temperature alert is
configured

 3

Learning
Outcome 3:

Deploy

Firmware

(15%)

Preparation of
Deployment
environment

Flashing tool is installed 2

Exporting
Firmware
Image

.hex file for the firmware
is created

 4

The firmware is flashed 4

Documentatio

n of Firmware

Documentation tool is
installed

 2

Documentation tool is
configured

2

Total marks 79

Percentage Weightage 100%

Minimum Passing line % (Aggregate): 70%

References:

1. Spiceworks. (2022, October 10). What is Firmware? Architecture and

Best Practices.

https://www.spiceworks.com/tech/devops/articles/what-is-firmware/

2. Berg, H. K., Rao, P., & Shriver, B. D. (1982). Firmware quality assurance.

National Computer Conference.

https://doi.org/10.1145/1500774.1500776

3. IEEE Conference Publication | IEEE Xplore. (2016, March 1). Verifying

information flow properties of firmware using symbolic execution.

https://ieeexplore.ieee.org/abstract/document/7459333/

4. Al-Hammouri, A. T. (2012). A comprehensive co-simulation platform for

cyber-physical systems. Computer Communications, 36(1), 8–19.

https://doi.org/10.1016/j.comcom.2012.01.003

5. Beghi, A., Marcuzzi, F., & Rampazzo, M. (2016). A virtual laboratory for

the prototyping of Cyber-Physical systems. IFAC-PapersOnLine.

https://doi.org/10.1016/j.ifacol.2016.07.154

6. Baheti, R., & Gil, H. (2011). Cyber-physical Systems. Google Scholar.

https://scholar.google.com/scholar_lookup?title=Cyber-

physical%20Systems&publication_year=2011&author=R.%20Baheti&aut

hor=H.%20Gil

7. Di Matematica “Tullio Levi-Civita” - Dm, D. (2014). Computing from

LaTeX: automated numerical computing from LaTeX expressions.

http://paduaresearch.cab.unipd.it/6930/

8. Beghi, A., Marcuzzi, F., & Rampazzo, M. (2016). A virtual laboratory for

the prototyping of Cyber-Physical systems. IFAC-PapersOnLine.

https://doi.org/10.1016/j.ifacol.2016.07.154

9. Qt Company. (n.d.). Embedded Software Programming Languages: pros,

cons, and comparisons of popular languages.

https://www.qt.io/embedded-development-talk/embedded-software-

programming-languages-pros-cons-and-comparisons-of-popular-

languages

10. Udemy. (2023, January). An Introduction to the Fundamentals of

Firmware Engineering for Embedded Systems.

https://www.spiceworks.com/tech/devops/articles/what-is-firmware/
https://www.spiceworks.com/tech/devops/articles/what-is-firmware/
https://www.spiceworks.com/tech/devops/articles/what-is-firmware/
https://doi.org/10.1145/1500774.1500776
https://doi.org/10.1145/1500774.1500776
https://doi.org/10.1145/1500774.1500776
https://ieeexplore.ieee.org/abstract/document/7459333/
https://ieeexplore.ieee.org/abstract/document/7459333/
https://ieeexplore.ieee.org/abstract/document/7459333/
https://doi.org/10.1016/j.comcom.2012.01.003
https://doi.org/10.1016/j.comcom.2012.01.003
https://doi.org/10.1016/j.comcom.2012.01.003
https://doi.org/10.1016/j.ifacol.2016.07.154
https://doi.org/10.1016/j.ifacol.2016.07.154
https://doi.org/10.1016/j.ifacol.2016.07.154
https://scholar.google.com/scholar_lookup?title=Cyber-physical%20Systems&publication_year=2011&author=R.%20Baheti&author=H.%20Gil
https://scholar.google.com/scholar_lookup?title=Cyber-physical%20Systems&publication_year=2011&author=R.%20Baheti&author=H.%20Gil
https://scholar.google.com/scholar_lookup?title=Cyber-physical%20Systems&publication_year=2011&author=R.%20Baheti&author=H.%20Gil
https://scholar.google.com/scholar_lookup?title=Cyber-physical%20Systems&publication_year=2011&author=R.%20Baheti&author=H.%20Gil
https://scholar.google.com/scholar_lookup?title=Cyber-physical%20Systems&publication_year=2011&author=R.%20Baheti&author=H.%20Gil
http://paduaresearch.cab.unipd.it/6930/
http://paduaresearch.cab.unipd.it/6930/
http://paduaresearch.cab.unipd.it/6930/
https://doi.org/10.1016/j.ifacol.2016.07.154
https://doi.org/10.1016/j.ifacol.2016.07.154
https://doi.org/10.1016/j.ifacol.2016.07.154
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB

https://www.udemy.com/course/firmware-

engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1

h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&u

tm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Cat

chall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_8801021

1481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-

52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qK

mBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tE

bQSaN7Ig5eUaAvBqEALw_wcB

11. 5V Media. (2022, September 28). Blog - 4 Communication protocols

embedded engineers should know.

https://www.weare5vmedia.com/media/communication-protocols-for-

an-embedded-engineer-to-know

12. Neil’s Log Book. (n.d.). Lab Guide: Embedded Memory Management.

https://nrqm.ca/nrqm.ca/mechatronics-lab-guide/lab-guide-embedded-

memory-management/index.html

13. Cyrille, C., Dross, C., Gilcher, F., & Moy, Y. (n.d.). Dynamic Memory

Management in Critical Embedded Software.

14. Beningo, J. (2013, January 10). Building reusable device drivers for

microcontrollers. Embedded.com. https://www.embedded.com/building-

reusable-device-drivers-for-microcontrollers/

15. Tutorialspoint. (n.d.). C - Memory management.

https://www.tutorialspoint.com/cprogramming/c_memory_management

.htm

16. GeeksforGeeks. (2022). Memory layout of C programs.

https://www.geeksforgeeks.org/memory-layout-of-c-program/

17. Gupta, E. (2022, February 28). Memory Layout in C - Scaler topics.

Scaler Topics. https://www.scaler.com/topics/c/memory-layout-in-c/

18. Mathew, H. (2022, October 12). The Complete Guide To Embedded

Firmware Development. Live Positively.

https://technocore360.livepositively.com/the-complete-guide-to-

embedded-firmware-development/

https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.udemy.com/course/firmware-engineering/?amp=&aff_code=Ewh3Y1lWQH8FQR93MkBPbG1RGXFfW1h8B14ZeU5TQ3YBRxFzWj5XMRM%3D&pmtag=CAREERS24LEARN15&utm_source=adwords&utm_medium=udemyads&utm_campaign=DSA_Catchall_la.EN_cc.ROW&utm_content=deal4584&utm_term=_._ag_88010211481_._ad_535397282064_._kw__._de_c_._dm__._pl__._ti_dsa-52949608673_._li_1012087_._pd__._&matchtype=&gclid=Cj0KCQjw2qKmBhCfARIsAFy8buIG982c3sLuhWj48XsDI0owJY42DJNT7YhDzSwck8tEbQSaN7Ig5eUaAvBqEALw_wcB
https://www.weare5vmedia.com/media/communication-protocols-for-an-embedded-engineer-to-know
https://www.weare5vmedia.com/media/communication-protocols-for-an-embedded-engineer-to-know
https://www.weare5vmedia.com/media/communication-protocols-for-an-embedded-engineer-to-know
https://www.weare5vmedia.com/media/communication-protocols-for-an-embedded-engineer-to-know
https://nrqm.ca/nrqm.ca/mechatronics-lab-guide/lab-guide-embedded-memory-management/index.html
https://nrqm.ca/nrqm.ca/mechatronics-lab-guide/lab-guide-embedded-memory-management/index.html
https://nrqm.ca/nrqm.ca/mechatronics-lab-guide/lab-guide-embedded-memory-management/index.html
https://nrqm.ca/nrqm.ca/mechatronics-lab-guide/lab-guide-embedded-memory-management/index.html
https://www.embedded.com/building-reusable-device-drivers-for-microcontrollers/
https://www.embedded.com/building-reusable-device-drivers-for-microcontrollers/
https://www.embedded.com/building-reusable-device-drivers-for-microcontrollers/
https://www.tutorialspoint.com/cprogramming/c_memory_management.htm
https://www.tutorialspoint.com/cprogramming/c_memory_management.htm
https://www.tutorialspoint.com/cprogramming/c_memory_management.htm
https://www.tutorialspoint.com/cprogramming/c_memory_management.htm
https://www.geeksforgeeks.org/memory-layout-of-c-program/
https://www.geeksforgeeks.org/memory-layout-of-c-program/
https://www.geeksforgeeks.org/memory-layout-of-c-program/
https://www.scaler.com/topics/c/memory-layout-in-c/
https://www.scaler.com/topics/c/memory-layout-in-c/
https://technocore360.livepositively.com/the-complete-guide-to-embedded-firmware-development/
https://technocore360.livepositively.com/the-complete-guide-to-embedded-firmware-development/
https://technocore360.livepositively.com/the-complete-guide-to-embedded-firmware-development/
https://technocore360.livepositively.com/the-complete-guide-to-embedded-firmware-development/

19. Xukyo. (2021). Generating and uploading HEX files to an Arduino.

AranaCorp. https://www.aranacorp.com/en/generating-and-uploading-

hex-files-to-an-arduino/

20. Arduino Forum. (2017, August 8). Creating a flashable *.hex-file from a

C-Source using the arduino tools. https://forum.arduino.cc/t/creating-

a-flashable-hex-file-from-a-c-source-using-the-arduino-tools/473620/11

https://www.aranacorp.com/en/generating-and-uploading-hex-files-to-an-arduino/
https://www.aranacorp.com/en/generating-and-uploading-hex-files-to-an-arduino/
https://www.aranacorp.com/en/generating-and-uploading-hex-files-to-an-arduino/
https://forum.arduino.cc/t/creating-a-flashable-hex-file-from-a-c-source-using-the-arduino-tools/473620/11
https://forum.arduino.cc/t/creating-a-flashable-hex-file-from-a-c-source-using-the-arduino-tools/473620/11
https://forum.arduino.cc/t/creating-a-flashable-hex-file-from-a-c-source-using-the-arduino-tools/473620/11

Glossary

1. Purpose Statement: A statement that defines the objectives and goals of a

module or course.

2. Embedded Systems: Systems that consist of hardware and software designed

for specific functions within a larger system.

3. Firmware Development: The process of creating software that is permanently

programmed into a hardware device, typically an embedded system.

4. Deployment: The process of making software or hardware available for use in a

real-world environment.

5. IoT (Internet of Things): A network of interconnected physical devices or

objects that can communicate and exchange data over the internet.

6. Learning Assumed to be in Place: The foundational knowledge and skills that

learners are expected to have before taking the module.

7. Delivery Modality: The method or approach used to deliver training, such as

in-person training, online courses, etc.

8. Assessment: The process of evaluating a learner's performance or

understanding of the material.

9. Theoretical Content: The portion of the module that focuses on theoretical

knowledge.

10. Formative Assessment: Ongoing assessments used to provide feedback to

learners and improve their understanding.

11. Practical Work: Hands-on exercises or projects that allow learners to apply

their knowledge.

12. Group Project and Presentation: Collaborative projects that involve multiple

learners working together.

13. Individual Project/Work: Independent work or projects undertaken by

individual learners.

14. Summative Assessment: A final assessment used to evaluate a learner's

overall understanding and performance.

15. Elements of Competence: Specific skills or abilities that learners are expected

to develop.

16. Performance Criteria: Criteria used to measure a learner's achievement of

competence in a particular area.

17. Firmware Architecture: The structure and organization of software code for

embedded systems.

18. IDE (Integrated Development Environment): A software application that

provides comprehensive facilities for software development.

19. Toolchain: A set of programming tools used for building software for a specific

target platform.

20. RTOS (Real-Time Operating System): An operating system designed for real-

time applications that require precise timing and control.

21. Socket Programming: The use of software sockets to enable communication

between computers or devices over a network.

22. Web APIs (Application Programming Interfaces): Interfaces that allow

different software applications to communicate with each other over the

internet.

23. Data Flow Diagram: A visual representation of how data flows within a system

or process.

24. Microcontroller: A small computer on a single integrated circuit used in

embedded systems.

25. Communication Protocols: Standard rules and conventions for data

communication between devices.

26. HTTP (Hypertext Transfer Protocol): The protocol used for transferring data

on the World Wide Web.

27. WebSockets: A communication protocol that enables bidirectional, real-time

communication between clients and servers.

28. IoT Networking: Networking technologies and protocols used in the Internet of

Things.

29. MQTT (Message Queuing Telemetry Transport): A lightweight, publish-

subscribe messaging protocol designed for low-bandwidth, high-latency, or

unreliable networks.

30. CoAP (Constrained Application Protocol): A protocol designed for resource-

constrained devices and networks in IoT applications.

31. LoRaWAN (Long Range Wide Area Network): A low-power, wide-area

networking protocol designed for long-range communication in IoT devices.

32. IPv6: The latest version of the Internet Protocol, designed to accommodate the

growing number of devices connected to the internet.

33. Mesh Networking: A network topology in which each node relays data for the

network.

34. Error Handling: The process of detecting, reporting, and managing errors in

software or hardware.

35. API Documentation: Documentation that explains how to use an API,

including endpoints, data formats, and authentication.

36. Demonstration and Simulation: Teaching techniques that involve showing or

simulating how something works.

37. Practical Exercise: Hands-on activities that reinforce theoretical learning.

38. Individual Work: Independent work or assignments completed by individual

learners.

39. Trainer-Guided: Learning activities facilitated by an instructor or trainer.

40. Formative Assessment Methods (CAT): Continuous assessment methods used

to monitor learner progress.

41. Integrated/Summative Assessment: A final assessment that evaluates overall

learning outcomes.

42. Aggregate: The total or combined result or percentage.

