Republic of Rwanda T RWANDA
Ministry of Education R B I TVET BOARD

APPLY SOFTWARE ENGINEERING

Learning Hours

100

ICT and Multimedia

Software Programming and Embedded Systems

Specific Module

ICTSES4002 TVET Certificate IV in Software Programming and
Embedded System

© Rwanda TVET Board, 2023




This module aims to equip learners with knowledge and skills
necessary for analyzing, designing, implementing and managing a
software project by providing a feasibility study, estimating cost and
Purpose . . 1. .
statement schedule, applying quality assurance, and providing configuration
management of Software projects. By the end of this module,
learners will be able to analyse, design, implement and manage a
software project with minimum supervision.
Learning -  Embedded Systems Hardware Design
assumed to be in - Networking Fundamentals
place -  Web APIs
Training delivery Assessment
Theoretical content 30% 30%
Practical work:
. . Group Formative
Delivery modality project and 30% assessment 50%
presentation 70% 70%
Individual
project 40%
/Work
Summative 50%
Assessment




Elements of competence Performance criteria
1.1. Feasibility study is properly conducted according to

Elements of Competence and Performance Criteria

methodical standards

1.2. System requirements specification is properly developed

in accordance with precise guidelines.
1. Manage software P gy
requirements and

analysis 1.3. Data collection is accurately performed based on

appropriate standards.

1.4. SDLC phases and models are properly described in line

with the software development process.

2.1. Principles of software
design are clearly described
based on software
requirements

2.2. System logical design is properly designed in line with
software requirements specifications
2. Design system

2.3. System architecture design is adequately designed in line
with software requirements

2.4. System physical design is
properly designed in line with
software requirements

3.1. Software testing is performed in line with system
specifications

3.2. Software quality metrics and techniques are properly

identified in line with software quality assurance.

3. Perform Software
Testing 3.3. Test planning and test case design are clearly described

in line with software quality assurance.

3.4. Test automation and testing tools are performed in line
with development and deployment environment settings.




3.5. Software documentation is well elaborated in line with
software engineering requirements

4. Manage Software
Project

4.1. Software project is appropriately planned in line with
system requirements

4.2. Project Team is properly managed based on project plan

4.3. Project is well monitored in line with the project plan.

5. Elaborate Software
Ethics and
Professionalism

5.1. Ethical considerations in software development are
explained

5.2. Professional responsibility is clearly described in line with
software development and embedded systems fields.

5.3. Code of conduct is effectively explained in line with
software development and embedded systems fields.

Intended Knowledge, Skills and Attitude

Knowledge

Skills Attitude




Describe:

v’ Feasibility study
methodologies

v System requirements

guidelines

Data collection

techniques

SDLC phases and models

Software design principles

Logical design principles

System architecture

Physical design principles

Software testing

methodologies

Software quality metrics

Test planning and case

design

Test automation and tools

Software documentation

Project planning process

and tools

v' Team management
principles

v’ Ethical considerations
principles

v Professional
responsibilities

NSNS

ANRNEN

CULS RS

ANIRN

ANANEN

Apply design principles
Design logical structure
Perform software testing
Identify quality metrics and
techniques

Elaborate documentation
Plan software projects
Explain codes of conduct
Conduct feasibility studies
Develop precise
specifications

Accurate data collection
Implement project using
SDLC phases and models
Architect system

Design physical aspects
Plan tests and design test
cases

Use testing automation and
tools

Manage project teams
Monitor projects

Attention to detail
Commitment to precise
documentation
Willingness to adhere to
standards

Openness to adapting to
SDLC approaches
Dedication to design
principles

Commitment to logical
design

Openness to adapting design
Willingness to iterate and
improve

Commitment to software
quality

Dedication to
comprehensive testing
Openness to automation for
efficiency

Attention to detail in
documentation
Willingness to document
testing processes
Commitment to effective
planning

Dedication to team
collaboration

Willingness to adapt to
changing plans
Commitment to ethical
conduct

Dedication to upholding
responsibilities
Willingness to promote
professionalism

Codes of conduct




Course content

At the end of the module the learner will be able

to:

1. Manage software requirements and
analysis

2. Design system

3. Perform Software Testing

4. Manage Software Project

5. Elaborate Software Ethics and
Professionalism

Learning outcomes

Learnin hours:20




\ Learning outcome 1: Manage software requirements and analysis

Indicative content

e Description of SDLC phases and models

v Description of SDLC phases
+ Define SDLC
+ Processes

v Description of SDLC models
+ Waterfall Model

Agile Model

Scrum

V-Model

Kanban

-+ + +

RAD (Rapid Application Development)
+ DevOps
e Performing Feasibility study

v Introduction of feasibility study
+ Definition
+ Importance of feasibility study

v Description of Types of Feasibility study
Technical feasibility

Operational feasibility

Economic feasibility

Schedule feasibility

-+ + + #

Legal and Ethical feasibility

v Application of Feasibility Study Process
Data Gathering and Analysis
Risk Management

Reporting and Decision

-+ + +

Communication and Implementation:
+ Documentation and Knowledge Management

e Data collection




v Introduction to data collection
+ Definition

+ importance

v Types of Data
+ Qualitative and quantitative data
+ Structured data and unstructured data

+ Primary and secondary data
v Data Collection Objectives
v Data Sources

v Data Collection Techniques

+ Stakeholder Interviews
Surveys and Questionnaires
Observations
Prototyping
Document Analysis
Focus Groups

Use Case Analysis

- F F F F F

Data Mining

v Description of Data Collection Tools and Technologies
+ Survey software (SurveyMonkey, Google form, Formstack, etc)
+ Data visualization tools (Google Data Studio, D3.js, etc)

e System requirements specification (SRS) Documentation process

v Introduction to System Requirement Specification
+ Importance

4+ SRS readers

v Types of Requirements
+ User requirements
+ System requirements

+ Software Specification

v Requirement Engineering Process
+ Feasibility Study

+ Requirement Gathering




4+ Software Requirement Specification

4+ Software Requirement Validation

v Requirement elicitation
4+ Requirement elicitation process
4+ Requirement Elicitation Technique
v Requirement Specification Format
v Requirements validation
4+ Characteristics of good requirements
4+ The “rule of thumb”
Vv Software requirement characteristics
4+ Different types of checks in requirements validation

4+ Popular requirements validation techniques

Resources required for the learning outcome

Computers with the necessary software installed and a reliable internet
connection

Equipment

Smartboards & Markers
Textbooks

Online resources
Educational videos

e PPT Presentations

Materials

Software tools to assist in project management, requirements gathering,
design, coding, testing, and deployment
like:

JIRA

Trello

GitHub

Microsoft Visio

Facilitation Brainstorming

techniques > Group discussion on SDLC phases
Oral assessment

Written assessment

Practical assessment
Scenario-Based Assessment

Tools

Formative
assessment
methods /(CAT)




Learning outcome 2: Design system Learning hours: 25

Indicative content

® Description of Principles of software design
v Introduction to Software Design Principles
+ Definition
+ Importance of software design
v Overview of SOLID Principles
+ Single Responsibility
Open/Closed

Liskov Substitution

o F

Interface Segregation

+ Dependency Inversion

v/ DRY, KISS, and YAGNI Principles

+ Don't Repeat Yourself' (DRY)

+ "Keep It Simple, Stupid" (KISS)

+ "You Ain't Gonna Need It" (YAGNI)
v High Cohesion and Low Coupling

v Design Patterns
+ Definition
+ Categorization of Design Patterns
+ Pattern Structure
+ Creational Design Patterns (Singleton, Factory Method, Abstract Factory,
Builder, Prototype)

#+

Structural Design Patterns (Adapter, Decorator, Composite, Bridge, Proxy)
+ Behavioral Design Patterns (Observer, Strategy, Command, State, Template
Method, Iterator, Chain of Responsibility, Visitor, Memento)
v UML (Unified Modelling Language)
+ Definition

+ Importance




+ Types of UML diagrams (Use Case Diagrams, Class Diagrams, Sequence
Diagrams, Activity Diagrams, State Machine Diagrams, Component

Diagrams, Deployment Diagrams, Package Diagrams, Object Diagrams, etc)

e System Logical Design
v Introduction to Logical Design
+ Definition and role in software development.

+ Link between requirements analysis and implementation.

v Components of Logical Design
+ High-level architecture: Components, modules, subsystems.

+ Data flow and data model: Data entities, attributes, relationships.

+ Control flow design: User interactions, processes, responses.

v Design Considerations
+ Scalability, extensibility, and modifiability.

+ Security and access control planning.

4+ Performance considerations and architectural choices.

v Iterative and Adaptive Design
+ [terative nature and responsiveness to changes.

+ Incorporating feedback into design adjustments.

v Transition to Detailed Design
+ Using logical design as a foundation.

+ Further breaking down components and providing implementation details.
o System Architecture Design

v Architectural Styles
+ Overview of monolithic, microservices, client-server architectures.

v Factors Influencing Architectural Decisions
+ Business requirements, user needs, technological constraints.

+ Impact of chosen architecture on system properties.

v Architectural Patterns
+ Layered architecture: Presentation, business logic, data access layers.

+ Model-View-Controller (MVC) pattern: Separation of concerns.
+ Event-driven architecture: Communication through events and messages.

e System Physical Design

v Introduction to Physical Design




+ Importance of translating logical design into a tangible system.

+ Addressing hardware and infrastructure requirements.

v Hardware and Infrastructure
+ Servers, databases, networking considerations.

+ Deployment environments: Development, testing, production.

v Scaling Strategies
+ Horizontal scaling and load balancing techniques.

+ Ensuring the system handles increased demands effectively.

v Disaster Recovery and Redundancy
+ Backup strategies and data protection measures.

+ Planning for system resilience and fault tolerance.
o Code Organization and Best Practices
v Code Organization Basics
+ Directory structures and separation of concerns.

+ Role of naming conventions in code readability.

v Design Patterns for Modularity
+ Implementation of common design patterns.

+ Encouraging reusability and maintainability.

v Version Control and Collaboration
+ Introduction to Git and version control systems.

+ Collaborative coding and managing code changes.

v Coding Standards and Quality
+ Consistent code formatting and indentation.

+ Effective use of comments and documentation.

v Error Handling and Testing
+ Implementing error-handling mechanisms.

+ Importance of unit testing, integration testing, and code quality.

v Dependency Management
+ Managing libraries, dependencies, and third-party components.

+ Avoiding version conflicts and staying up to date.

Resources required for the Learning outcome

e Computers,

e Laptops

e servers with the necessary software installed and a reliable
internet connection

Equipment




Smartboards & Markers
Textbooks

Online resources
Educational videos
e PPT Presentations

Materials

Software tools to assist in project management the design like:
e Figma

Lucidchart

Nulab

StarUML

Tools

Brainstorming sessions

Group discussion on software design
Practical exercise on software design
prototyping

user interviews

design workshops

Facilitation
techniques

Oral assessment

Written assessment
Practical assessment
Scenario-Based Assessment

Formative
assessment
methods /(CAT)

Learning outcome 3:

Learning hours: 25

Indicative content




e Description of software testing

v Understanding Software Testing
+ Definition and importance of software testing.

+ The role of testing in ensuring software quality.

v Aligning Testing with System Specifications
+ Explanation of system specifications (functional, non-functional).
+ Importance of ensuring testing is aligned with these specifications.

+ How testing helps verify and validate requirements.

v Types of Testing
+ Introduction to various testing types (unit, integration, system,
acceptance).
+ Demonstrating how each type corresponds to different specification
levels.
+ Examples of test cases for different testing types.

e Identification of Software quality metrics and techniques

v Software Quality Metrics
+ Definition and significance of software quality metrics.
+ Examples of metrics (code coverage, defect density) and how they
measure quality.

+ Importance of choosing appropriate metrics for the project.

v Quality Assurance Techniques
+ Introduction to quality assurance techniques (reviews, inspections,
audits).
+ How these techniques ensure compliance with quality standards.
+ Role of reviews and inspections in identifying defects early.

o Test case design

v Test Planning
+ Importance of comprehensive test planning.
+ Steps in test planning (scope, resources, scheduling).
+ Explanation of test case design techniques (equivalence partitioning,
boundary value analysis).

+ Ensuring test coverage and traceability.




+ Structuring test cases for clarity and effectiveness.

+ Creating a test plan document.

v Test Plan Quality Metrics
Completeness
Consistency
Traceability
Readability

-+ + +

Maintainability

o Test automation and testing tools

v Test Automation Introduction
+ Benefits of test automation (efficiency, repeatability).

+ Integrating automation into the development process.

v Selecting Testing Tools
+ Factors influencing the choice of testing tools.
+ Overview of popular testing frameworks (Selenium, Cypress, JUnit,
TestNG).

+ Aligning tools with technology stack and project requirements.

v Using Testing Tools
+ Hands-on practice with testing tools.
+ Writing and executing automated test scripts.
+ Integrating test automation into continuous integration processes.

o Software documentation

v Importance of Documentation
+ Significance of clear and comprehensive software documentation.

+ Different types of documentation (user manuals, technical guides).

v Creating Effective Documentation
+ Guidelines for creating structured and user-friendly documentation.
+ Ensuring documentation remains up-to-date.

+ Documentation tools and formats.




Resources required for the Learning outcome

Computers with the necessary software installed and a

Equipment reliable internet connection
° Smartboards & Markers
Materials * TeX‘FbOOkS
e Online resources
e Educational videos
e PPT Presentations
Software tools to assist in software testing like:
e Postman
e Selenium
Tools
e Cypress
e JMeter
e Bugrzilla
e Brainstorming

Facilitation techniques e Group discussion on software testing

e Practical exercise on software testing

Oral assessment

Written assessment
Practical assessment
Scenario-Based Assessment

Formative assessment
methods /(CAT)

Learning outcome 4: Manage Software Project Learning hours: 25

Indicative content

e Software Project Planning
v Introduction to Project Planning
+ Importance of project planning in software development.
+ Role of project planning in achieving project success.
v Defining Project Objectives and Scope
+ Identifying project goals, objectives, and scope boundaries.




+ Techniques: Stakeholder interviews, workshops, surveys.
+ Documenting project scope statements and setting clear expectations.
+ Tools: Project charter templates, scope statement templates.

v Work Breakdown Structure (WBS)
Creating a WBS to break down project deliverables into manageable tasks.
Techniques: Decomposition, mind mapping, tree diagrams.
Organizing tasks hierarchically and assigning resources.
Technique: Developing a detailed WBS using project management software
(e.g., Microsoft Project, Wrike).
v Project Scheduling
+ Network diagram
+ Techniques for creating project schedules (Critical Path Method (CPM),
Program Evaluation and Review Technique (PERT).
+ Sequencing tasks, estimating durations, and determining critical paths.
+ Tools: Gantt chart software (e.g., Microsoft Project, Trello).

v Resource Allocation and Management
+ Allocating human and material resources to project tasks.
+ Balancing resource constraints and resolving conflicts.
+ Technique: Resource leveling using project management software.

v Risk Assessment and Mitigation
+ Identifying potential project risks and assessing their impacts.
+ Developing risk mitigation strategies and contingency plans.
+ Create a Risk Register to document and manage identified risks and mitigation
plans.
+ Tools: Risk management software (e.g., RiskWatch, RiskyProject)

v Cost Estimation and Budgeting

+ Estimating project costs, including personnel, equipment, and overhead.

+ Developing project budgets and tracking expenditures.

+ Technique: Cost-Benefit Analysis and Budgeting using spreadsheet software.
Manage Software Project Team

v Team Formation and Roles
+ Forming project teams and defining roles and responsibilities.
+ Identifying team members' skills and expertise.
+ Tools: Team collaboration platforms (e.g., Slack, Microsoft Teams).

v Effective Communication
+ Importance of clear and open communication within the project team.
+ Strategies for promoting effective communication and collaboration.
+ Tools: Communication and collaboration tools (e.g., Slack, email, project
management software).

v Motivation and Leadership
+ Leadership styles and techniques for motivating project team members.
+ Creating a positive work environment and fostering team morale.
+ Technique: Motivation techniques like recognition and rewards.

v Conflict Resolution:
+ Identifying sources of conflict within the project team.
+ Techniques for resolving conflicts and maintaining team harmony.
+ Tool: Conflict Resolution Techniques Matrix.

R ok




v Performance Management
+ Setting performance expectations and goals for team members.
+ Monitoring and evaluating team performance and providing feedback.
+ Tools: Performance management software (e.g., BambooHR, Workday)

v Training and Skill Development
+ Identifying skill gaps and providing training opportunities for team members.
+ Supporting professional growth within the project team.

Project Monitoring

v Project Metrics and KPIs
+ Defining relevant project metrics and key performance indicators (KPIs).
+ Monitoring progress against established metrics.
+ Technique: Balanced Scorecard Approach for KPI selection and monitoring.

v Project Status Reporting:
+ Creating regular status reports to communicate project progress to
stakeholders.
+ Highlighting accomplishments, issues, and potential risks.

v Change Management
+ Monitoring changes to project scope, schedule, and requirements.
+ Evaluating change requests

v Issue Identification and Resolution
+ Techniques for identifying project issues and bottlenecks.
+ Developing strategies to address and resolve issues promptly.
+ Tools: Issue tracking software (e.g., JIRA, Trello)
v Adaptive Planning
+ Importance of adapting project plans based on monitoring results.
+ Modifying schedules, resource allocations, and strategies as needed.

Equipment

Laptops or Computers

Projector for Presentations

Interactive Whiteboard or Chalkboard
Audiovisual Equipment for Online Classes

Video Conferencing Equipment for Virtual Classes
Internet Connectivity

Materials

Project Management Books and Guides
Case Studies

Templates and Examples

Interactive Content

Whiteboards and Markers

Laptop and Presentation Tools

Online Learning Platforms

Workbooks and Exercises

Jira

Tools e Trello

e Microsoft Project




e Asana
e RiskWatch, RiskyProject
e Slack, Microsoft Teams, email

e BambooHR

Group Discussions
Brainstorming

Role-Playing

Peer Reviews

Group Projects

Case-Based Learning

Oral assessment

Written assessment
Practical Assessment
Scenario-Based Assessment

Facilitation techniques

Formative assessment
methods /(CAT)

Learning outcome 5: Elaborate Software
Ethics and Professionalism

Learning hours:5

Indicative content

e Ethical Considerations in Software Development

v Introduction to Ethical Considerations
+ Importance of ethics in software development and its impact on society.
+ Overview of ethical challenges in software development.

v Privacy and Data Ethics
+ Addressing user data privacy, consent, and security considerations.
+ Discussing the ethical implications of data collection and storage.

v Bias and Fairness:
+ Exploring biases in algorithms and software that can result in discrimination.
+ Discussing ways to mitigate bias and ensure fairness.

v Transparency and Accountability
+ Ethical responsibility to provide transparency in how software operates.
+ Discussing accountability for software decisions and outcomes.

v Accessibility and Inclusivity
+ Ethical obligation to make software accessible to all users.
+ Addressing the importance of considering diverse user needs.

v Intellectual Property and Open-Source Ethics
+ Discussing ethical use of intellectual property and open-source software.
+ Exploring licensing and attribution considerations.
o Description of Professional Responsibility

v Introduction to Professional Responsibility
+ Defining professional responsibility in the context of software development.
+ Emphasizing the role of software professionals in delivering quality and ethical
products.




v Roles and Responsibilities
+ Describing the responsibilities of software developers, testers, project
managers, and other team members.
+ Discussing the ethical implications of each role's decisions.

v User-Centered Design
+ Explaining the responsibility to prioritize user needs and well-being.
+ Discussing the impact of user-centered design on software ethics.

v Safety and Reliability
+ Addressing the ethical obligation to ensure software safety and reliability.
+ Discussing the consequences of software failures.

v Continuous Learning and Improvement
+ Emphasizing the importance of staying updated with industry trends and best
practices.
+ Discussing ethical implications of not keeping skills current.
Code of Conduct in Software Development

v Introduction to Code of Conduct
+ Defining a code of conduct and its purpose in guiding ethical behavior.
+ Explaining its role in maintaining professionalism and trust.

v Components of a Code of Conduct:
+ Describing the key elements of a code of conduct (values, principles, and
expected behaviors).

v Adaptation to Software Development
+ Explaining how a code of conduct is tailored to address ethical challenges in
these fields.
+ Discussing examples of ethical principles specific to software development.

v Code of Conduct Implementation
+ Discussing strategies for enforcing the code of conduct and promoting ethical
behavior.
+ Addressing challenges and resistance that may arise.

v Reporting Violations and Consequences
+ Explaining the process for reporting violations and the potential
consequences.
+ Discussing whistleblower protection and handling sensitive situations.

Equipment

Laptops or Computers

Projector for Presentations

Audiovisual Equipment for Online Classes
Internet Connectivity

Materials

Ethics and Professionalism Resources (Articles, Codes of
Ethics)

Interactive Content (Videos, Infographics)

Laptop and Presentation Tools

Online Learning Platforms

Workbooks and Exercises

Tools

Virtual Classrooms (e.g., Zoom, Microsoft Teams)
Professionalism Assessment Tools (Self-assessment
quizzes)




Ethical Dilemma Scenarios

Group Discussions
Role-Playing

Debates

Guest Speakers

Scenario Analysis

e Oral assessment

e Written assessment

e Scenario-Based Assessment

Integrated/Summative assessment (For specific module)

Integrated situation

Facilitation techniques

Formative assessment
methods /(CAT)

Integrated Scenario: The Hotel Ordering System
Scenario Background:

The Hotel Ordering System allows the user of a web browser to order pizza for home delivery.
To place an order, a shopper searches to find items to purchase, adds items one at a time to
a shopping cart, and possibly searches again for more items. When all items have been
chosen, the shopper provides a delivery address. If not paying with cash, the shopper also
provides credit card information.The system has an option for shoppers to register with the
pizza shop.They can then save their name and address information, so that they do not have
to enter this information every time that they place an order.

Key responsibilities:
As a Software Engineer, develop a use case diagram, Data flow Diagram and SRS for a use
case for placing an order, Place Order. The use case should show a relationship to two

previously specified use cases, Identify Customer, which allows a user to register and log in,
and Pay by Credit, which models credit card payments.

Project tasks:

1. Identification of requirement
2. Develop a use case diagram and Data flow Diagram
3. Develop SRS
4. Identify techniques for creating project schedules
Resources
Tools Computers and internet
e Trello
e Microsoft Project
Equipment e Asana
e RiskWatch, RiskyProject




e Slack, Microsoft Teams, email
e BambooHR

e FEthics and Professionalism Resources (Articles, Codes
of Ethics)

Interactive Content (Videos, Infographics)

Laptop and Presentation Tools

Online Learning Platforms

Workbooks and Exercises

Materials/ Consumables

Assessable Assessment criteria Observation Marks

(Based on performance Indicator

outcomes Yes I\[e) allocation

criteria)
2.1 Principles of
software design are . .
clearly described based SRS is Qescr1bed 20 marks
on software and designed
requirements
2.2 System logical
Learning design is properly System logical
Outcome 2: designed in line with design is 20 marks
Design software requirements designed
system specifications
2.3System architecture System
o . .
(80%) des%gn is 'ade.quate.ly arcl'utegture 20 marks
designed in line with design is
software requirements |designed
2.4 System physical .
design is properly iy sFem. physical
designed in line with esigh 18 20 marks
g . designed
software requirements
Learning Project is
Outcome 4: 4.3 Project is well 1 d in lin
Manage planned in line with the p iﬁréi n et 20 marks
Software project plan methods Wll © Ercgec
Project (20%) plan methods
Total marks
Percentage Weightage 100%
Minimum Passing line % (Aggregate): 70%

References:

1. "Software Engineering: A Practitioner's Approach" by Roger S. Pressman




"Design Patterns: Elements of Reusable Object-Oriented Software" by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides

"Clean Code: A Handbook of Agile Software Craftsmanship" by Robert C. Martin
"The Pragmatic Programmer: Your Journey to Mastery' by Andrew Hunt and David
Thomas

“Software Engineering: Theory and Practice” By Forrest Shull and Roseanne
Tesoriero




