

 BDCPC301 - SOFTWARE ENGINEERING

 BDCPC301 - APPLY SOFTWARE ENGINEERING

Competence

SPESE402

RQF Level: 4 Learning Hours

 100

Credits:10

Sector: ICT and Multimedia

Trade: Software Programming and Embedded Systems

Module Type: Specific Module

Curriculum: ICTSES4002 TVET Certificate IV in Software Programming and

Embedded System

Copyright: © Rwanda TVET Board, 2023

1200 Issue Date: August 2023

Purpose
statement

This module aims to equip learners with knowledge and skills
necessary for analyzing, designing, implementing and managing a
software project by providing a feasibility study, estimating cost and
schedule, applying quality assurance, and providing configuration
management of Software projects. By the end of this module,
learners will be able to analyse, design, implement and manage a
software project with minimum supervision.

Learning
assumed to be in
place

- Embedded Systems Hardware Design
- Networking Fundamentals
- Web APIs

Delivery modality

Training delivery 100% Assessment
Total
100%

Theoretical content 30%

Formative
assessment

30%

50%

Practical work:

70% 70%

Group
project and
presentation

30%

Individual
project
/Work

40%

Summative
Assessment

50%

Elements of Competence and Performance Criteria

Elements of competence Performance criteria

1. Manage software
requirements and
analysis

1.1. Feasibility study is properly conducted according to

methodical standards

1.2. System requirements specification is properly developed

in accordance with precise guidelines.

1.3. Data collection is accurately performed based on

appropriate standards.

1.4. SDLC phases and models are properly described in line

with the software development process.

2. Design system

2.1. Principles of software
design are clearly described
based on software
requirements

2.2. System logical design is properly designed in line with
software requirements specifications

2.3. System architecture design is adequately designed in line
with software requirements

2.4. System physical design is
properly designed in line with
software requirements

3. Perform Software
Testing

3.1. Software testing is performed in line with system
specifications

3.2. Software quality metrics and techniques are properly
identified in line with software quality assurance.

3.3. Test planning and test case design are clearly described
in line with software quality assurance.

3.4. Test automation and testing tools are performed in line
with development and deployment environment settings.

3.5. Software documentation is well elaborated in line with
software engineering requirements

4. Manage Software
Project

4.1. Software project is appropriately planned in line with
system requirements

4.2. Project Team is properly managed based on project plan

4.3. Project is well monitored in line with the project plan.

5. Elaborate Software
Ethics and
Professionalism

5.1. Ethical considerations in software development are
explained

5.2. Professional responsibility is clearly described in line with
software development and embedded systems fields.

5.3. Code of conduct is effectively explained in line with
software development and embedded systems fields.

Intended Knowledge, Skills and Attitude

Knowledge Skills Attitude

Describe:
✓ Feasibility study

methodologies
✓ System requirements

guidelines
✓ Data collection

techniques
✓ SDLC phases and models
✓ Software design principles
✓ Logical design principles
✓ System architecture
✓ Physical design principles
✓ Software testing

methodologies
✓ Software quality metrics
✓ Test planning and case

design
✓ Test automation and tools
✓ Software documentation
✓ Project planning process

and tools
✓ Team management

principles
✓ Ethical considerations

principles
✓ Professional

responsibilities
✓

✓ Apply design principles
✓ Design logical structure
✓ Perform software testing
✓ Identify quality metrics and

techniques
✓ Elaborate documentation
✓ Plan software projects
✓ Explain codes of conduct
✓ Conduct feasibility studies
✓ Develop precise

specifications
✓ Accurate data collection
✓ Implement project using

SDLC phases and models
✓ Architect system
✓ Design physical aspects
✓ Plan tests and design test

cases
✓ Use testing automation and

tools
✓ Manage project teams
✓ Monitor projects

✓ Attention to detail
✓ Commitment to precise

documentation
✓ Willingness to adhere to

standards
✓ Openness to adapting to

SDLC approaches
✓ Dedication to design

principles
✓ Commitment to logical

design
✓ Openness to adapting design
✓ Willingness to iterate and

improve
✓ Commitment to software

quality
✓ Dedication to

comprehensive testing
✓ Openness to automation for

efficiency
✓ Attention to detail in

documentation
✓ Willingness to document

testing processes
✓ Commitment to effective

planning
✓ Dedication to team

collaboration
✓ Willingness to adapt to

changing plans
✓ Commitment to ethical

conduct
✓ Dedication to upholding

responsibilities
✓ Willingness to promote

professionalism
✓ Codes of conduct

Course content

Learning outcomes

At the end of the module the learner will be able

to:

1. Manage software requirements and

analysis

2. Design system

3. Perform Software Testing

4. Manage Software Project

5. Elaborate Software Ethics and
Professionalism

Learning hours:20

Learning outcome 1: Manage software requirements and analysis

Indicative content

● Description of SDLC phases and models

✔ Description of SDLC phases

 Define SDLC

 Processes

✔ Description of SDLC models

 Waterfall Model

 Agile Model

 Scrum

 V-Model

 Kanban

 RAD (Rapid Application Development)

 DevOps

● Performing Feasibility study

✔ Introduction of feasibility study

 Definition

 Importance of feasibility study

✔ Description of Types of Feasibility study

 Technical feasibility

 Operational feasibility

 Economic feasibility

 Schedule feasibility

 Legal and Ethical feasibility

✔ Application of Feasibility Study Process

 Data Gathering and Analysis

 Risk Management

 Reporting and Decision

 Communication and Implementation:

 Documentation and Knowledge Management

● Data collection

✔ Introduction to data collection

 Definition

 importance

✔ Types of Data

 Qualitative and quantitative data

 Structured data and unstructured data

 Primary and secondary data

✔ Data Collection Objectives

✔ Data Sources

✔ Data Collection Techniques

 Stakeholder Interviews

 Surveys and Questionnaires

 Observations

 Prototyping

 Document Analysis

 Focus Groups

 Use Case Analysis

 Data Mining

✔ Description of Data Collection Tools and Technologies

 Survey software (SurveyMonkey, Google form, Formstack, etc)

 Data visualization tools (Google Data Studio, D3.js, etc)

● System requirements specification (SRS) Documentation process

✔ Introduction to System Requirement Specification

 Importance

 SRS readers

✔ Types of Requirements

 User requirements

 System requirements

 Software Specification

✔ Requirement Engineering Process

 Feasibility Study

 Requirement Gathering

 Software Requirement Specification

 Software Requirement Validation

✔ Requirement elicitation

 Requirement elicitation process

 Requirement Elicitation Technique

✔ Requirement Specification Format

✔ Requirements validation

 Characteristics of good requirements

 The “rule of thumb”

✔ Software requirement characteristics

 Different types of checks in requirements validation

 Popular requirements validation techniques

Resources required for the learning outcome

Equipment
Computers with the necessary software installed and a reliable internet
connection

Materials

● Smartboards & Markers
● Textbooks
● Online resources
● Educational videos
● PPT Presentations

Tools

Software tools to assist in project management, requirements gathering,

design, coding, testing, and deployment
like:

● JIRA
● Trello
● GitHub
● Microsoft Visio

Facilitation
techniques

● Brainstorming

⮚ Group discussion on SDLC phases

Formative
assessment
methods /(CAT)

● Oral assessment
● Written assessment
● Practical assessment
● Scenario-Based Assessment

Learning outcome 2: Design system Learning hours: 25

Indicative content

● Description of Principles of software design

✔ Introduction to Software Design Principles

 Definition

 Importance of software design

✔ Overview of SOLID Principles

 Single Responsibility

 Open/Closed

 Liskov Substitution

 Interface Segregation

 Dependency Inversion

✔ DRY, KISS, and YAGNI Principles

 Don't Repeat Yourself" (DRY)

 "Keep It Simple, Stupid" (KISS)

 "You Ain't Gonna Need It" (YAGNI)

✔ High Cohesion and Low Coupling

✔ Design Patterns

 Definition

 Categorization of Design Patterns

 Pattern Structure

 Creational Design Patterns (Singleton, Factory Method, Abstract Factory,

Builder, Prototype)

 Structural Design Patterns (Adapter, Decorator, Composite, Bridge, Proxy)

 Behavioral Design Patterns (Observer, Strategy, Command, State, Template

Method, Iterator, Chain of Responsibility, Visitor, Memento)

✔ UML (Unified Modelling Language)

 Definition

 Importance

 Types of UML diagrams (Use Case Diagrams, Class Diagrams, Sequence

Diagrams, Activity Diagrams, State Machine Diagrams, Component

Diagrams, Deployment Diagrams, Package Diagrams, Object Diagrams, etc)

● System Logical Design

✔ Introduction to Logical Design
 Definition and role in software development.

 Link between requirements analysis and implementation.

✔ Components of Logical Design
 High-level architecture: Components, modules, subsystems.

 Data flow and data model: Data entities, attributes, relationships.

 Control flow design: User interactions, processes, responses.

✔ Design Considerations
 Scalability, extensibility, and modifiability.

 Security and access control planning.

 Performance considerations and architectural choices.

✔ Iterative and Adaptive Design
 Iterative nature and responsiveness to changes.

 Incorporating feedback into design adjustments.

✔ Transition to Detailed Design
 Using logical design as a foundation.

 Further breaking down components and providing implementation details.

● System Architecture Design

✔ Architectural Styles
 Overview of monolithic, microservices, client-server architectures.

✔ Factors Influencing Architectural Decisions
 Business requirements, user needs, technological constraints.

 Impact of chosen architecture on system properties.

✔ Architectural Patterns
 Layered architecture: Presentation, business logic, data access layers.

 Model-View-Controller (MVC) pattern: Separation of concerns.

 Event-driven architecture: Communication through events and messages.

● System Physical Design

✔ Introduction to Physical Design

 Importance of translating logical design into a tangible system.

 Addressing hardware and infrastructure requirements.

✔ Hardware and Infrastructure
 Servers, databases, networking considerations.

 Deployment environments: Development, testing, production.

✔ Scaling Strategies
 Horizontal scaling and load balancing techniques.

 Ensuring the system handles increased demands effectively.

✔ Disaster Recovery and Redundancy
 Backup strategies and data protection measures.

 Planning for system resilience and fault tolerance.

● Code Organization and Best Practices

✔ Code Organization Basics
 Directory structures and separation of concerns.

 Role of naming conventions in code readability.

✔ Design Patterns for Modularity
 Implementation of common design patterns.

 Encouraging reusability and maintainability.

✔ Version Control and Collaboration
 Introduction to Git and version control systems.

 Collaborative coding and managing code changes.

✔ Coding Standards and Quality
 Consistent code formatting and indentation.

 Effective use of comments and documentation.

✔ Error Handling and Testing
 Implementing error-handling mechanisms.

 Importance of unit testing, integration testing, and code quality.

✔ Dependency Management
 Managing libraries, dependencies, and third-party components.

 Avoiding version conflicts and staying up to date.

Resources required for the Learning outcome

Equipment

● Computers,
● Laptops
● servers with the necessary software installed and a reliable

internet connection

Materials

● Smartboards & Markers

● Textbooks
● Online resources
● Educational videos
● PPT Presentations

Tools

Software tools to assist in project management the design like:
● Figma
● Lucidchart
● Nulab
● StarUML

Facilitation
techniques

● Brainstorming sessions
● Group discussion on software design
● Practical exercise on software design
● prototyping
● user interviews
● design workshops

Formative
assessment
methods /(CAT)

● Oral assessment
● Written assessment
● Practical assessment
● Scenario-Based Assessment

Learning outcome 3:
Perform Software Testing

Learning hours: 25

Indicative content

● Description of software testing

✔ Understanding Software Testing

 Definition and importance of software testing.

 The role of testing in ensuring software quality.

✔ Aligning Testing with System Specifications

 Explanation of system specifications (functional, non-functional).

 Importance of ensuring testing is aligned with these specifications.

 How testing helps verify and validate requirements.

✔ Types of Testing

 Introduction to various testing types (unit, integration, system,

acceptance).

 Demonstrating how each type corresponds to different specification

levels.

 Examples of test cases for different testing types.

● Identification of Software quality metrics and techniques

✔ Software Quality Metrics

 Definition and significance of software quality metrics.

 Examples of metrics (code coverage, defect density) and how they

measure quality.

 Importance of choosing appropriate metrics for the project.

✔ Quality Assurance Techniques

 Introduction to quality assurance techniques (reviews, inspections,

audits).

 How these techniques ensure compliance with quality standards.

 Role of reviews and inspections in identifying defects early.

● Test case design

✔ Test Planning

 Importance of comprehensive test planning.

 Steps in test planning (scope, resources, scheduling).

 Explanation of test case design techniques (equivalence partitioning,

boundary value analysis).

 Ensuring test coverage and traceability.

 Structuring test cases for clarity and effectiveness.

 Creating a test plan document.

✔ Test Plan Quality Metrics

 Completeness

 Consistency

 Traceability

 Readability

 Maintainability

● Test automation and testing tools

✔ Test Automation Introduction

 Benefits of test automation (efficiency, repeatability).

 Integrating automation into the development process.

✔ Selecting Testing Tools

 Factors influencing the choice of testing tools.

 Overview of popular testing frameworks (Selenium, Cypress, JUnit,

TestNG).

 Aligning tools with technology stack and project requirements.

✔ Using Testing Tools

 Hands-on practice with testing tools.

 Writing and executing automated test scripts.

 Integrating test automation into continuous integration processes.

● Software documentation

✔ Importance of Documentation

 Significance of clear and comprehensive software documentation.

 Different types of documentation (user manuals, technical guides).

✔ Creating Effective Documentation

 Guidelines for creating structured and user-friendly documentation.

 Ensuring documentation remains up-to-date.

 Documentation tools and formats.

Resources required for the Learning outcome

Equipment
Computers with the necessary software installed and a
reliable internet connection

Materials

● Smartboards & Markers
● Textbooks
● Online resources
● Educational videos
● PPT Presentations

Tools

Software tools to assist in software testing like:
● Postman
● Selenium
● Cypress
● JMeter
● Bugzilla

Facilitation techniques

● Brainstorming

● Group discussion on software testing

● Practical exercise on software testing

Formative assessment
methods /(CAT)

● Oral assessment
● Written assessment
● Practical assessment
● Scenario-Based Assessment

Learning outcome 4: Manage Software Project Learning hours: 25

Indicative content

● Software Project Planning

✔ Introduction to Project Planning
 Importance of project planning in software development.
 Role of project planning in achieving project success.

✔ Defining Project Objectives and Scope
 Identifying project goals, objectives, and scope boundaries.

 Techniques: Stakeholder interviews, workshops, surveys.
 Documenting project scope statements and setting clear expectations.
 Tools: Project charter templates, scope statement templates.

✔ Work Breakdown Structure (WBS)
 Creating a WBS to break down project deliverables into manageable tasks.
 Techniques: Decomposition, mind mapping, tree diagrams.
 Organizing tasks hierarchically and assigning resources.
 Technique: Developing a detailed WBS using project management software

(e.g., Microsoft Project, Wrike).

✔ Project Scheduling

 Network diagram
 Techniques for creating project schedules (Critical Path Method (CPM),

Program Evaluation and Review Technique (PERT).
 Sequencing tasks, estimating durations, and determining critical paths.
 Tools: Gantt chart software (e.g., Microsoft Project, Trello).

✔ Resource Allocation and Management
 Allocating human and material resources to project tasks.
 Balancing resource constraints and resolving conflicts.
 Technique: Resource leveling using project management software.

✔ Risk Assessment and Mitigation
 Identifying potential project risks and assessing their impacts.
 Developing risk mitigation strategies and contingency plans.
 Create a Risk Register to document and manage identified risks and mitigation

plans.
 Tools: Risk management software (e.g., RiskWatch, RiskyProject)

✔ Cost Estimation and Budgeting
 Estimating project costs, including personnel, equipment, and overhead.
 Developing project budgets and tracking expenditures.
 Technique: Cost-Benefit Analysis and Budgeting using spreadsheet software.

● Manage Software Project Team

✔ Team Formation and Roles
 Forming project teams and defining roles and responsibilities.
 Identifying team members' skills and expertise.
 Tools: Team collaboration platforms (e.g., Slack, Microsoft Teams).

✔ Effective Communication
 Importance of clear and open communication within the project team.
 Strategies for promoting effective communication and collaboration.
 Tools: Communication and collaboration tools (e.g., Slack, email, project

management software).

✔ Motivation and Leadership
 Leadership styles and techniques for motivating project team members.
 Creating a positive work environment and fostering team morale.
 Technique: Motivation techniques like recognition and rewards.

✔ Conflict Resolution:
 Identifying sources of conflict within the project team.
 Techniques for resolving conflicts and maintaining team harmony.
 Tool: Conflict Resolution Techniques Matrix.

✔ Performance Management
 Setting performance expectations and goals for team members.
 Monitoring and evaluating team performance and providing feedback.
 Tools: Performance management software (e.g., BambooHR, Workday)

✔ Training and Skill Development
 Identifying skill gaps and providing training opportunities for team members.
 Supporting professional growth within the project team.

● Project Monitoring

✔ Project Metrics and KPIs
 Defining relevant project metrics and key performance indicators (KPIs).

 Monitoring progress against established metrics.
 Technique: Balanced Scorecard Approach for KPI selection and monitoring.

✔ Project Status Reporting:
 Creating regular status reports to communicate project progress to

stakeholders.
 Highlighting accomplishments, issues, and potential risks.

✔ Change Management
 Monitoring changes to project scope, schedule, and requirements.
 Evaluating change requests

✔ Issue Identification and Resolution

 Techniques for identifying project issues and bottlenecks.
 Developing strategies to address and resolve issues promptly.
 Tools: Issue tracking software (e.g., JIRA, Trello)

✔ Adaptive Planning
 Importance of adapting project plans based on monitoring results.
 Modifying schedules, resource allocations, and strategies as needed.

Equipment

● Laptops or Computers
● Projector for Presentations
● Interactive Whiteboard or Chalkboard

● Audiovisual Equipment for Online Classes
● Video Conferencing Equipment for Virtual Classes
● Internet Connectivity

Materials

● Project Management Books and Guides
● Case Studies
● Templates and Examples
● Interactive Content
● Whiteboards and Markers
● Laptop and Presentation Tools
● Online Learning Platforms
● Workbooks and Exercises

Tools

● Jira

● Trello

● Microsoft Project

● Asana

● RiskWatch, RiskyProject

● Slack, Microsoft Teams, email

● BambooHR

Facilitation techniques

● Group Discussions
● Brainstorming
● Role-Playing
● Peer Reviews

● Group Projects
● Case-Based Learning

Formative assessment
methods /(CAT)

● Oral assessment
● Written assessment
● Practical Assessment
● Scenario-Based Assessment

Learning outcome 5: Elaborate Software
Ethics and Professionalism

Learning hours:5

Indicative content

● Ethical Considerations in Software Development

✔ Introduction to Ethical Considerations
 Importance of ethics in software development and its impact on society.
 Overview of ethical challenges in software development.

✔ Privacy and Data Ethics
 Addressing user data privacy, consent, and security considerations.
 Discussing the ethical implications of data collection and storage.

✔ Bias and Fairness:
 Exploring biases in algorithms and software that can result in discrimination.
 Discussing ways to mitigate bias and ensure fairness.

✔ Transparency and Accountability
 Ethical responsibility to provide transparency in how software operates.
 Discussing accountability for software decisions and outcomes.

✔ Accessibility and Inclusivity
 Ethical obligation to make software accessible to all users.
 Addressing the importance of considering diverse user needs.

✔ Intellectual Property and Open-Source Ethics
 Discussing ethical use of intellectual property and open-source software.
 Exploring licensing and attribution considerations.

● Description of Professional Responsibility

✔ Introduction to Professional Responsibility
 Defining professional responsibility in the context of software development.
 Emphasizing the role of software professionals in delivering quality and ethical

products.

✔ Roles and Responsibilities
 Describing the responsibilities of software developers, testers, project

managers, and other team members.
 Discussing the ethical implications of each role's decisions.

✔ User-Centered Design
 Explaining the responsibility to prioritize user needs and well-being.
 Discussing the impact of user-centered design on software ethics.

✔ Safety and Reliability
 Addressing the ethical obligation to ensure software safety and reliability.
 Discussing the consequences of software failures.

✔ Continuous Learning and Improvement
 Emphasizing the importance of staying updated with industry trends and best

practices.
 Discussing ethical implications of not keeping skills current.

● Code of Conduct in Software Development

✔ Introduction to Code of Conduct
 Defining a code of conduct and its purpose in guiding ethical behavior.
 Explaining its role in maintaining professionalism and trust.

✔ Components of a Code of Conduct:
 Describing the key elements of a code of conduct (values, principles, and

expected behaviors).

✔ Adaptation to Software Development
 Explaining how a code of conduct is tailored to address ethical challenges in

these fields.
 Discussing examples of ethical principles specific to software development.

✔ Code of Conduct Implementation
 Discussing strategies for enforcing the code of conduct and promoting ethical

behavior.
 Addressing challenges and resistance that may arise.

✔ Reporting Violations and Consequences
 Explaining the process for reporting violations and the potential

consequences.
 Discussing whistleblower protection and handling sensitive situations.

Equipment

● Laptops or Computers
● Projector for Presentations
● Audiovisual Equipment for Online Classes
● Internet Connectivity

Materials

● Ethics and Professionalism Resources (Articles, Codes of
Ethics)

● Interactive Content (Videos, Infographics)
● Laptop and Presentation Tools
● Online Learning Platforms
● Workbooks and Exercises

Tools
● Virtual Classrooms (e.g., Zoom, Microsoft Teams)
● Professionalism Assessment Tools (Self-assessment

quizzes)

● Ethical Dilemma Scenarios

Facilitation techniques

● Group Discussions
● Role-Playing
● Debates
● Guest Speakers
● Scenario Analysis

Formative assessment
methods /(CAT)

● Oral assessment
● Written assessment
● Scenario-Based Assessment

Integrated/Summative assessment (For specific module)

Integrated situation

Integrated Scenario: The Hotel Ordering System

Scenario Background:

The Hotel Ordering System allows the user of a web browser to order pizza for home delivery.
To place an order, a shopper searches to find items to purchase, adds items one at a time to
a shopping cart, and possibly searches again for more items. When all items have been
chosen, the shopper provides a delivery address. If not paying with cash, the shopper also
provides credit card information.The system has an option for shoppers to register with the
pizza shop.They can then save their name and address information, so that they do not have
to enter this information every time that they place an order.

 Key responsibilities:

As a Software Engineer, develop a use case diagram, Data flow Diagram and SRS for a use
case for placing an order, Place Order. The use case should show a relationship to two
previously specified use cases, Identify Customer, which allows a user to register and log in,

and Pay by Credit, which models credit card payments.

Project tasks:

1. Identification of requirement
2. Develop a use case diagram and Data flow Diagram
3. Develop SRS
4. Identify techniques for creating project schedules

Resources

Tools Computers and internet

Equipment

● Trello
● Microsoft Project
● Asana
● RiskWatch, RiskyProject

● Slack, Microsoft Teams, email
● BambooHR

Materials/ Consumables

● Ethics and Professionalism Resources (Articles, Codes
of Ethics)

● Interactive Content (Videos, Infographics)
● Laptop and Presentation Tools
● Online Learning Platforms
● Workbooks and Exercises

Assessable
outcomes

Assessment criteria
(Based on performance
criteria)

Indicator
Observation

Marks
allocation Yes No

Learning
Outcome 2:
Design
system

(80%)

2.1 Principles of
software design are
clearly described based
on software
requirements

SRS is described
and designed

 20 marks

2.2 System logical
design is properly
designed in line with
software requirements
specifications

System logical
design is
designed

 20 marks

2.3System architecture
design is adequately
designed in line with
software requirements

System
architecture
design is

designed

 20 marks

2.4 System physical
design is properly
designed in line with
software requirements

System physical
design is

designed

 20 marks

 Learning
Outcome 4:
Manage
Software
Project (20%)

4.3 Project is well
planned in line with the
project plan methods

Project is
planned in line
with the project
plan methods

 20 marks

Total marks

Percentage Weightage 100%

Minimum Passing line % (Aggregate): 70%

References:

1. "Software Engineering: A Practitioner's Approach" by Roger S. Pressman

2. "Design Patterns: Elements of Reusable Object-Oriented Software" by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides

3. "Clean Code: A Handbook of Agile Software Craftsmanship" by Robert C. Martin
4. "The Pragmatic Programmer: Your Journey to Mastery" by Andrew Hunt and David

Thomas

5. “Software Engineering: Theory and Practice” By Forrest Shull and Roseanne
Tesoriero

