

DATA STRUCTURES AND ALGORITHMS USING C

GENDS501

Apply Data Structures and Algorithms using C

Competence

RQF Level: 5 Learning Hours

100

Credits: 10

Sector: ICT and Multimedia

Trade: Computer System and Architecture

Module Type: General

Curriculum: ICTCSA5001-TVET Certificate V in Computer System and

Architecture

Copyright: © Rwanda TVET Board, 2024

2024/25

Issue Date: May 2024

Purpose statement	This general module describes the knowledge, skills and attitude required to apply Data Structure and Algorithm using C programming. This module is intended to prepare learners pursuing TVET Level 5 in computer system and architecture. At the end of this module, the learners will be able to identify Data Structures and Algorithms, apply Linear Data Structure and Apply Non-					
Learning assumed to be in place	Iinear Data Structure. N/A					
Delivery modality	Training delivery Theoretical content Practical work: Group project and presentatio n Individual project /Work		70%	Formative assessment	70%	Total 100% 50%
			S	ummative Asses	ssment	50%

Elements of Competence and Performance Criteria

Elements of	Performance criteria
competence	
	1.1. Data structures concepts are clearly identified based on intended use.
1. Identify Data	1.2. Algorithms concepts are properly analysed based on system specification and
Structures and	intended use.
Algorithms	1.3. Algorithms are properly written based on problem to be solved and their
	classifications.
	1.4. C programming environment is properly prepared based on language standards.
2. Apply Linear Data	2.1. Linear Data Structures concepts are clearly identified based on intended use.
Structure	2.2. Arrays are properly applied based on their use cases.
	2.3. Linked List is properly applied based on their uses cases.
	2.4. Queue is properly applied based on algorithm
	2.5. Stack is properly applied based on algorithm
3. Apply Non-Linear	3.1 Non-Linear Data structures concepts are clearly identified based on intended use.
Data Structure	3.2. Tree is properly applied based on its intended uses
	3.3. Graph is properly applied based on its intended uses
	3.4. Tables are properly applied based on their intended use

Knowledge	Skills	Attitude
 Description of Data structures concepts and Algorithms 	Analysing algorithmsPrepare C programming environment.	Being InnovativeHaving Timemanagement
 Classification of sorting algorithms Identification of Linear Data 	Writing algorithmTesting C programming environment.	Having Self ConfidenceHaving Teamworkspeed

Knowledge	Skills	Attitude
structure concepts • Identification of Non-Linear Data structure concepts	 Applying arrays. Applying stacks. Applying queue. Applying linked list. Applying tree. Applying graph. Applying tables. 	 Being Flexible Being Self-learner Making Decision Maker Having Critical Thinker Being Persistence Having Self-motivated Having Reasoning Being Open minded

Course content		
Learning outcomes	At the end of the module, the learner will be able to:	
	1. Identify Data Structures and Algorithms	
	2. Apply Linear Data Structures	
	3. Apply Non-Linear Data Structures	
Learning outcome 1: Identify Data Learning hours: 20 hours		
Structures and Algorithms		
	Indicative content	
Identification of data structures conce	pts	
✓ Description of key terms		
↓ Data		
♣ Structure		
Data structures		

	List
	♣ Searching
	♣ Sorting
	↓ Keys
	↓ Index
✓ (Classifications of data structures
	↓ Linear
	♣ Non-linear
√ [Data types
	↓ Built-in
	↓ Derived
1	↓ User defined
1	♣ Abstract Data Type(ADT)
✓ [List representation
✓ [Data structure operations
	♣ Traversing
	♣ Searching
	↓ Inserting
	↓ Deleting
	♣ Sorting
	♣ Merging
• Descrip	tion of algorithms
√ /	Asymptotic notation
✓ 9	Searching algorithms
	↓ Binary search
	Linear search
	♣ Depth-First Search (DFS)
	♣ Breadth-First Search (BFS)

./	uting also with and
	rting algorithms
*	Selection sort
*	Bubble sort
	Insertion sort
	Merge sort
+	Quick sort
+	Shell sort
	Heap sort
+	Radix sort
+	Counting sort
+	
	ssification of sorting algorithms by:
	Number of comparisons
4	Number of swaps
4	Memory usage
+	Recursion
+	Stability
4	Adaptability
4	Internal sorting
4	External sorting
 Analysing 	algorithmic concepts
✓ Alg	gorithmic cases
4	Worst-case
4	Average-case
4	Best-case
✓ Co	mplexity
4	Time complexity
4	Space complexity

Test time and space complexity

• Writing algorithms

- ✓ Develop Data structures
 - Using structured English
 - Using structured pseudocodes
- ✓ Perform sorting operations
- ✓ Perform searching operations

• Preparation of C programming environment

- ✓ Tools installation
 - **↓** IDE installation
 - Compiler installation
 - ♣ Setup environment variable path
- ✓ Test development environment
 - ♣ Execute default program
 - ♣ Write samples for case scenarios(use C programming)

	Resources required for the learning outcome
Equipment	Computer
Materials	Internet
	Training Manual
Tools	C Compiler
	Integrated Development Environment (IDE)
	Text Editors
	 VisuAlgo
Facilitation techniques or	Demonstration
Learning activity	Individual practical exercises
	Group discussion
	Trainer guided

Formative assessment	Written assessment
methods /(CAT)	Performance assessment

Learning outcome 2: Apply Linear data structure

Learning hours: 40

Indicative content

• Identification of linear data structure concepts

- ✓ Description of linear data structure
 - Definition of key terms
 - ♣ Types
 - Characteristics
- ✓ Operations performed on linear data structures.

• Applying arrays data structure

- ✓ Declaring arrays
- ✓ Initializing arrays
- ✓ Accessing array Elements
- √ Iterating over arrays
- ✓ Array types
 - One dimensional array
 - Multidimensional arrays
- ✓ Apply array basic operations in algorithms
- ✓ Implementation of array basic operations in C

Applying linked list data structure

- ✓ Description of linked list data structure
 - Definition of key terms
 - Link

Next Linked List ✓ Representation of linked list ✓ Types of linked list Single Doubly Circular ✓ Apply linked lists basic operations in algorithms. ✓ Implementation of linked list basic operations in C Applying queue data structure ✓ Description of queue data structure Definition of key terms Basic terminologies ✓ Representation ✓ Circular queue ✓ Apply queue primary functions. ✓ Apply queue basic operations in algorithms. ✓ Implementation of queue basic operations in C

Applying stack data structure

- ✓ Description of stack data structure
 - Definition of key terms
 - Basic terminologies
- ✓ Representation
- ✓ Apply stack primary functions.
- ✓ Apply stack basic operations in algorithms.
- ✓ Implementation of stack basic operations in C

Resources required for the indicative content • Computer

Materials	Internet Connection	
	Training Manual	
Tools	C Compiler	
	Integrated Development Environment (IDE)	
	 VisuAlgo 	
	Text editors	
Facilitation techniques or	Demonstration	
Learning activity	Individual practical exercises	
	Group discussion	
	Trainer guided	
Formative assessment	Written assessment	
methods /(CAT)	Performance assessment	

Learning outcome 3: Apply Non-linear	Learning hours: 40 hours
Data Structure	
I	ndicative content
Identification of non-linear data structur	es concepts
✓ Description of non-linear data stru	uctures
Definition of key terms	
Basic terminologies	
✓ Types of non-linear data structure	es s
✓ Characteristics	
✓ Operations performed on linear d	ata structures
✓ Applications	
Applying tree data structure	

- ✓ Description of tree data structure
 - Definition of key terms
 - Basic terminologies
 - Types
- ✓ Tree representation
- ✓ Apply tree basic operations algorithms
- ✓ Huffman's tree
- ✓ Implementation of tree operations in C

Applying graph data structure

- ✓ Description of graph data structure
 - Definition of key terms
 - Basic terminologies
 - Types
- ✓ Graph representation
- ✓ Apply graph basic operations algorithms
- ✓ Apply Shortest path algorithms
 - Minimum spanning tree (Prim's Algorithm, Kruskal's Algorithm)
 - Dijkstra's algorithm
 - Warshall's algorithm

Applying hash table data structure

- ✓ Description of table data structure
 - Definition of key terms
 - Hash tables
 - Bucket
 - Hash functions
 - Load factor
 - Collision resolution
- ✓ Apply hashing functions algorithms

- ✓ Apply collision resolution techniques
- ✓ Implementation of tables data structure in C

	Resources required for the indicative content
Equipment	Computer
Materials	Internet Connection
	Training Manual
Tools	C Compiler
	Integrated Development Environment (IDE)
	Text Editors
	VisuAlgo
Facilitation techniques or	Demonstration
Learning activity	Individual practical exercises
	Group discussion
	Trainer guided
Formative assessment	Oral Assessment
methods /(CAT)	Written assessment
	Performance assessment

References

geeksforgeeks.org. (n.d.). *Graph Data Structure and Algorithms*. Retrieved from geeksforgeeks.org: https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/

Karumanchi, N. (2011). Data Structures and Algorithms. CareerMonk Publications.

lucknow. (2007). DATA STRUCTURES USING C. NEW YORK: TATA McGraw-Hill.

Srivastava, S. K. (2004May 30, 2004). *Data Structures through C in Depth.* DELHII: Bpb Publications.

Thareja, R. (2014). Data Structures using C. DELHI: Oxford University Press.

Glossary

Data structure: is a way of organizing and storing data in a computer system so that it can be accessed and manipulated efficiently.

Algorithm: refers to a step-by-step procedure or a set of rules used to solve a problem or perform a specific task

Linear: is a type of data organization where elements are arranged in a sequential order.

Non-Linear: is a type of data organization where elements are not arranged in a sequential order.

Array: is a fundamental data structure used to store a collection of elements of the same data type

Stack: is a fundamental data structure that follows the Last In, First Out (LIFO) principle It is used to store a collection of elements with two primary operations: push and pop.

Queue: is a fundamental data structure that follows the First In, First Out (FIFO) principle used to store a collection of elements where elements are inserted at the rear (enqueue) and removed from the front (dequeuer)

Tree: is a non-linear data structure that is widely used in computer science and programming for organizing hierarchical data

Graph: is a non-linear data structure used to represent relationships or connections between a set of objects

Abbreviation

DFS: Depth-First Search

BFS: Breadth-First Search

LIFO: Last In, First Out

FIFO: First In, First Out

ADT: Abstract Data Type