

 BDCPC301 - HOBBY KERNEL DEVELOPMENT

 BDCPC301 - Develop Hobby Kernel using C

Competence

CSAHK501

RQF Level: 5 Learning Hours
 120

Credits: 12

Sector: ICT and Multimedia

Trade: Computer System and Architecture

Module Type: SPECIFIC

Curriculum: ICTCSA5001-TVET CERTIFICATE V COMPUTER SYSTEM AND
ARCHITECTURE

Copyright: © Rwanda TVET Board, 2024

 Issue Date: March, 2024

1 | P a g e

Purpose statement This specific module describes the skills, knowledge and attitude
required to Develop Hobby Kernel using C. This module is intended to
prepare students pursuing TVET Level 5 in Computer System and
Architecture. Upon completion of this module, the learner will be able
to Prepare working environment, Implement Memory Management,
Implement Process Management, implement persistence management,
and implement a core kernel.

Learning assumed to
be in place

Data Structures and Algorithms using C.

Delivery modality Training delivery 100% Assessment Total 100%

Theoretical content 20%

Formative
assessment

20%

50%

Practical work:

80% 80%

Group project

and

presentati

on

30%

Individual

project

/Work

50%

 Summative Assessment 50%

Elements of Competence and Performance Criteria

Elements of competence Performance criteria
1.Prepare working
environment

1.1. Tools and equipment are properly selected based on hobby

kernel requirements

1.2. Software tools are properly installed based on installation

guide and system specifications

1.3. Virtual environment is effectively configured inline with

hardware compatibility

2.Implement Memory
management

2.1. Memory hierarchy and addressing is properly

implemented based on a specific addressing mode

2.2. Memory allocation is properly implemented based on

operating system support

2 | P a g e

2.3. Layout of process address space and protection is

effectively managed based on memory usage

optimization.

2.4. Virtual memory and swapping techniques are efficiently

applied based on system workload

2.5. Defragmentation Techniques are properly applied based

on memory allocation and management best practices

3.Implement Process
Management

3.1. Processes and threads are properly implemented based on

system workloads.

3.2. Process scheduling algorithms are properly implemented

based on system workloads

3.3. Parallelism are properly applied based on the intended

performance and efficiency

4.Implement persistence
management

4.1. Mass storage structure is properly managed based on the

storage form factor

4.2. Input/ Output systems are properly applied based on the

interrupt or Direct Memory Access (DMA) techniques

4.3. File systems are properly implemented based on

operating system structure

5.Implement core Kernel

5.1. Assembly language concepts are properly applied based

on language standards

5.2. The core kernel is properly initialized based on the

intended use and hardware they want to support.

5.3. A simple bootloader is properly developed based on

target system architecture

5.4. Interrupt handling is properly implemented based on

operating system requirements

5.5. A function to display console output on the screen in a

kernel is properly implemented based on display hardware

being used.

5.6. System call is properly implemented based on operating

system kernel architecture.

3 | P a g e

Knowledge Skills Attitude

● Description of hobby
kernel.

● Identification of the
required tools for hobby
kernel development.

● Identification hardware
compatibility.

● Description memory
addressing and its modes.

● Description memory
allocation and
management unit.

● Description layout of
process address space.

● Identification
fragmentation techniques.

● Description process state
and scheduling
algorithms.

● Identification Inter-
Process Communication
primitives.

● Identification mass
storage structure.

● Description assembly
Language and x86
architecture.

● Installation of required
software tools.

● Configuration of virtual
environment.

● Applying of memory
addressing.

● Implementation of Cache.
● Implementation of memory

allocation.
● Implementation virtual

memory.
● Applying fragmentation

techniques.
● Implementation process

control blocks.
● Implementation

multithreading and
synchronization
mechaniques.

● Development of scheduling
algorithms.

● Implementation file
system

● Implementation I/O
systems.

● Development assembly
hello, world.

● Applying register
commands.

● Writing and build C and
Assembly kernel objects.

● Development a simple boot
loader.

● Implementation of OS
displays.

● Implementation system
calls.

● Paying attention
to detail

● Flexibility
● Adaptability
● Team work
● Persistence
● Time

management and
organized

● Curiosity
● Passion
● Creativity
● Patience
● Integrity
● Reliability
● Trustworthy
● Honesty
● Innovation
● Confidence

4 | P a g e

Course content

Learning outcomes At the end of the module the learner will be able to:

1. Preparing a working environment

2. Implement Memory Management

3.Implement Process Management

4. Implement persistence management

5. Implement a core kernel

Learning outcome 1: Prepare

working environment

Learning hours: 10

Indicative content

● Selection of tools and equipment

✓ Hobby kernel description

 Definition

 Role of kernel in operating system

 Benefits of hobby kernel development

✓ Requirements for hobby kernel

 Target architecture

 Virtualization tools

 Development tools

✓ Identification of the right tools and equipment to use in development.

● Installation of Software tools

✓ QEMU

✓ QtEMU

✓ A HEX Editor

✓ Text editor (VSCode)

✓ NASM

✓ SASM

✓ MinGw For Compiling C Programs

✓ Configuring MinGw For Compiling C Programs

● Configuring virtual environment

5 | P a g e

✓ Identifying hardware compatibility

✓ Configuring installed software to Environment Path

✓ Configuring installed virtualization tools

✓ Running, checking, and testing tools and environment

Resources required for the learning outcome

Equipment Computer, and Projector

Materials Internet

Tools HexEditor, Code editor, NASM, SASM, QEMU, QtEMU, Compiler, vmware

workstation.

Facilitation techniques
or Learning activity

Demonstration, Group discussion, Practical exercises, and Trainer-guided

Formative assessment
methods /(CAT)

Written assessment, Oral presentation, and Practical assessment

Learning outcome 2: Implement
Memory management

Learning hours: 25

Indicative content

● Implementation of memory hierarchy and addressing.

✓ Description

 Definition

 Hierarchy

 Addressing modes

 Mechanisms for cache management

 Cache replacement policies

 Snooping

✓ Applying memory addressing.

 Address Translation Scheme

 Direct addressing

 Indirect addressing

 Indexed addressing

 Register addressing

✓ Implementation of Cache

6 | P a g e

 Developing algorithms (LRU (Least Recently Used), LFU (Least Frequently

Used))

 Implementing Cache Coherency using MESI or MOESI protocols

 Testing Cache

✓ Applying Memory Mapping

 Using paging

 Using Segmentation

● Implementation of memory allocation.

✓ Description of Memory Management Unit

 Definition

 Role

 Structure of Page Table

✓ Implementing Page Table Management

 Data structures for managing page tables

 Algorithms for managing page tables

✓ Description of Memory Allocation

 Definition

 Memory allocation strategies

✓ Apply Memory Allocation

 Memory Allocation Algorithms (first-fit, best-fit, or worst-fit)

 Write test cases

✓ Description of Memory Protection

 Memory regions.

 Mechanisms.

✓ Applying Memory Protection

 Setting access permissions

 Using hardware-based memory protection

● Managing layout of process address space and protection

✓ Process address space.

 Organization

 Memory-based attacks

 Manage Address Space Layout Randomization (ASLR) Settings

✓ Stack and Heap Management

 Stack algorithm

 Heap algorithm

✓ Memory usage optimization.

● Applying Virtual memory and swapping techniques.

✓ Definition

 Virtual memory

 Swapping

7 | P a g e

✓ Applying Page Replacement Algorithms

 FIFO (First In First Out)

 LRU (Least Recently Used)

 Clock algorithm

✓ Applying Demand Paging

 Set required pages into memory

 Page fault handling

✓ Applying Swap Space Management

 Techniques for managing swap space

 Reducing disk I/O overhead

● Applying defragmentation techniques.

✓ Description

 Definition

 Types

 Techniques

✓ Performing defragmentation

 Memory Compaction

 Buddy System Allocation

 Memory Pooling

Resources required for the indicative content

Equipment Computer, and Projector

Materials Internet

Tools HexEditor, Code editor, NASM, SASM, QEMU, QtEMU, Compiler

Facilitation techniques
or Learning activity

Demonstration, Group discussion, Practical exercises, and Trainer-guided

Formative assessment
methods /(CAT)

Written assessment, Oral presentation, and Practical assessment

8 | P a g e

Learning outcome 3: Implement
Process Management

Learning hours: 25

Indicative content

● Implementation of processes and threads

✓ Description of key terms

 Process

 Thread

 Multi-thread

 Process control block

 State process model

 No preemptive

 Preemptive

 Cooperating process(inter-process)

 User level threads

 Kernel level thread

 Deadlock

 Livelock

✓ Interpretation of processes

 states diagram

 tree

✓ identifying process hierarchy important

 foreground process

 visible process

 service process

 background process

 empty process

✓ Applying Process states

 Fork New process

 Simulate Running process

 Simulate Waiting process

 Simulate Ready process

 Simulate Terminated process

 Creation of a thread into a process

✓ Applying thread operations

 list of operations

 multithreading

✓ Applying process control block (PCB) to manage process

✓ Applying state management mechanism

 Context switching

9 | P a g e

 Process synchronization(locks, semaphore, monitor)

✓ Applying inter-process mechanism

 Pipes

 Shared memory

 Message queue

 Signals

✓ Applying algorithm to Handle deadlocks and livelocks

● Implementation of process scheduling algorithms

✓ Description of key terms

 Process scheduling

 Preemptive

 Non preemptive

 CPU Burst

 I/O Burst

 CPU Scheduler

 Dispatcher modules

 Dispatcher latency

✓ Description of scheduling criteria

 CPU utilization

 Throughput

 Turnaround time

 Waiting time

 Response time

✓ Description of scheduling algorithm optimization criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

✓ Applying scheduling algorithms

 preemptive Scheduling(round robin, shortest remaining time first, priority

scheduling)

 Non-preemptive Scheduling(First come first serve, shortest job first)

✓ Applying scheduling algorithm evaluation

 Deterministic evaluation

 Queuing model

 Little’s formula

● Applying Parallelism

✓ Description

 Parallelism Types (task parallelism, data parallelism, instruction-level

parallelism, and thread-level parallelism)

10 | P a g e

 Parallelism roles

✓ Implementing parallelism techniques

 Multithreading

 Multiprocessing

 SIMD instructions.

● Applying Lock-Based Concurrency Control

✓ Description

 Definition

 Data items

 Transactions

 Locks(Exclusive (X) lock, Shared (S) lock

 Benefits of Lock-BCC

 Drawbacks of Lock-BCC

 Alternatives to Lock-BCC

✓ Implementing Lock-based Concurrency Control Protocol

 Apply lock due to read and write

 Apply awaiting until the conflicting lock is released

 Releasing the lock due to transaction completion

Resources required for the indicative content

Equipment Computer and Project

Materials Internet

Tools HexEditor, Code editor, NASM, SASM, QEMU, QtEMU, Compiler

Facilitation techniques
or Learning activity

Demonstration, Group discussion, Practical exercises, and Trainer-guided

Formative assessment
methods /(CAT)

Written assessment, Oral presentation, and Practical assessment

Learning outcome 4: Implement
persistence management

Learning hours: 20

Indicative content

● Introduction to persistence management

✓ Description of key terms

 System calls

 Data Buffers

11 | P a g e

 Caching

 Disk flushing

 Journaling

✓ Identifying Data persistence Mechanism

 Direct Writes and File System Calls

 Journaling File Systems

● Management of Mass storage structure

✓ Description of mass storage physical structure

 Types

 Characteristics

 Disk attachment

 Effect of a device’s structure

✓ Applying free space management

 Techniques

 advantages

✓ Applying disk scheduling algorithm

 Disk scheduling overview

 Importance of Disk Scheduling

 Select Disk Scheduling Algorithms

✓ Applying RAID (Redundant Arrays of Independent Disks) technique

 Advantage

 Levels

 Key Evaluation Points

● Applying I/O systems

✓ Description of I/O system in OS

 Importance

 Challenges of device heterogeneity

✓ Identifying I/O devices

 Types (storage, network, human interface)

 Characteristics (speed, protocols)

✓ Identifying Device Drivers

 Function

 Structure

✓ Identifying I/O models

 Bloking I/O

 Non-Blocking I/O

 I/O completion Ports(IOCPs)

✓ Applying Interrupts handling

 Interrupt-driven I/O

12 | P a g e

 Interrupt service routines(ISRs)

✓ Applying I/O scheduling

 Scheduling multiple I/O requests

 Common I/O scheduling algorithms

✓ Apply device management

 Device allocation and deallocation

 Error handling (Detecting, reporting, and recovering from I/O errors)

● Implementing file systems

✓ Describe file system

 Definition

 Types

 Purpose of file systems

 Various file system options

 File system organization (logical view of data)

 Directory structures (hierarchical organization, navigation)

 File attributes (name, size, creation/modification time, permissions)

 File system operations

✓ Identification of existing file systems

✓ Identification of file system selection criteria

 Performance

 Security

 Compatibility

 Advantages

 Limitations

✓ Applying basic file operations

 Create

 Open/close

 Read/Write

 Delete

✓ Applying directory operations

 Create directory

 Delete directory

 List directory contents

 Change directory

 Search for a file

✓ Applying File system Management Operations

 Rename

 Move/Copy

 Change permissions

 Change the ownership

13 | P a g e

 Search a file

✓ Applying file allocation methods

 Contiguous Allocation

 Linked Allocation

 Indexed Allocation

Resources required for the indicative content

Equipment Computer and Projector

Materials Internet

Tools HexEditor, Code editor, NASM, SASM, QEMU, QtEMU,

Compiler

Facilitation techniques or Learning
activity

Demonstration, Group discussion, Practical exercises,
and Trainer-guided

Formative assessment methods /(CAT) Written assessment, Oral presentation, and Practical

assessment

Learning outcome 5: Implement
core kernel

Learning hours: 40

Indicative content

● Applying Assembly Language concepts
✓ Description

 Definition
 History
 advantages
 sections
 comment
 statement syntax
 hello world output
 file extension
 Compiler
 x86 Processor data sizes
 x86 Processor Endianness
 Classification of Registers (General, Control, Segment)

14 | P a g e

 Variables
✓ Compiling and Linking an Assembly Program in NASM
✓ Applying memory segments

 data segment
 code segment
 stack segment

✓ Applying different categories of register
✓ Applying system calls
✓ Applying addressing mode

 register addressing
 immediate addressing
 memory addressing

✓ Applying variables and constants
✓ Applying arithmetic and logical instruction
✓ Applying conditions
✓ Applying loops(optional)
✓ Applying Numbers
✓ Applying string
✓ Applying array

● Initialization of the core kernel.

✓ Description
 Definition of a kernel
 History of kernel development
 Types of kernels
 Kernel layout
 Purpose of the kernel
 Computer tasks to accomplish kernel functions.
 Device drivers(Types of device drivers,Kernel mode vs User mode)

✓ Write and build the object file from the assembly code using NASM (to fire the main
kernel function in the C file).

✓ Write and build the object file from the C code using GCC.
✓ Write a linker script and saving it in an “ld” file extension.
✓ Merge the Assembly-built and C-built objects using the linker script.

 An executable kernel file will be executed.
 Test our kernel file.

● Development of a simple Bootloader with assembly language
✓ Introduction

 Definition of a boot loader
 Languages that can be used.
 Compilers that can be used.
 the system boots.

✓ Program architecture.
✓ Development environment

15 | P a g e

✓ Implement basic BIOS Interrupts and screen clearing
✓ Implement Mixed code

 CString
 CDisplay
 Types.h
 BootMain C file
 StartPoint assembly file

✓ Assemble everything
 Creation of COM file
 Assembly automation

✓ Test and Demonstration
 How to test boot loader
 Testing with Virtual Machine VmWare
 Testing on the real hardware

✓ Debug our system with tools
 TD(Turbo Debugger)
 CodeView
 D86
 Bosch

● Implementation of Interrupt Handling
✓ Description

 Definition
 Interrupt Handler
 Interrupt Descriptor Table (IDT)
 Programmable Interrupt Controller (PIC)

✓ Applying interrupt handlers
✓ Creating an Entry in Interrupt Descriptor Table (IDT)
✓ Handling an Interrupt
✓ Creating a generic Interrupt Handler
✓ Applying Programmable Interrupt Controller (PIC)

● Implementing a function to display console output on the screen in a kernel
✓ Printing To Screen (Hello, World OS)
✓ Filling the Screen with Characters(For Fun)!!
✓ Filling The Screen With Colours
✓ Scrolling the screen
✓ Other Bios Display Related Routines

● Implementing System call
✓ Introduction of system call

 Types of System calls in OS
 Examples of System calls in Windows and Unix.
 Rules for Passing parameters to the System Call
 Services Provided by System calls
 Features of System calls

16 | P a g e

 System calls advantages
✓ Developing a C-file system call

✓ Modifying necessary files to integrate our system call

✓ Recompile and Reboot

✓ Testing the system call

● Implement publication of our system
✓ Build an .iso file from our system.

✓ Test the .iso file

 Running it on virtual machine
 Running it on physical machine

✓ Generate OS documentation

Resources required for the indicative content

Equipment Computer and Projector

Materials Internet

Tools HexEditor, Code editor, NASM, SASM, QEMU, QtEMU,

Compiler

Facilitation techniques or Learning
activity

Demonstration, Group discussion, Practical exercises,
and Trainer-guided

Formative assessment methods /(CAT) Written assessment, Oral presentation, and Practical

assessment

Integrated/Summative assessment (For specific module)

XYZ Electronics Ltd located in Gasabo district, it is a growing startup that specializes in creating
different computer-based solutions. They have built a computer that is supposed to manipulate
.txt files. The company is facing a problem on their self-built computer as it does not run a .txt
file because it doesn’t have an operating system. As an OS Developer, you are hired to develop
an OS that will solve this problem and integrate an OS into this computer system hardware to
satisfy their needs.
Task:

1. Develop an operating system (OS) tailored for text editing of .txt files.

2. Generate an ISO image for installation purposes.

3. Prepare clear and concise documentation explaining how to use the OS.

17 | P a g e

Instruction:

1. Enable the OS to create, edit, and save .txt files on the computer storage.

2. Ensure the OS integrates seamlessly with the company's self-built computer hardware.

3. Include a simple console for user interaction.

4. Implement user-friendly process management within the OS.

5. Ensure the computer does not crash upon reboot even if power cuts off suddenly.

6. Incorporate error handling routines to detect and manage process failures effectively.

7. Display appropriate error messages on the console to notify users of any problems.

The work must be performed within 12 hours .
All equipment, tools and materials are provided.

Resources

Tools HexEditor, Code editor, NASM, SASM, QEMU, QtEMU, Compiler

Equipment
Computer

Materials/ Consumables Internet

Assessable
outcomes

Assessment criteria
(Based on performance
criteria)

Indicator

Observatio
n

Marks
allocation

Yes No

Learning
outcome 1:
Preparing
working
environment
.
(8%)

Tools and equipment are
properly selected based
on hobby kernel
requirements

Tools and
equipment are
selected

 3

Software tools are
properly installed based
on installation guide and
system specifications

Software tools are
installed

 4

Virtual environment Is
effectively configured
inline with hardware
compatibility

Virtual
environment Is
configured

 3

Learning
outcome 2:
Implement

Memory hierarchy and
addressing is properly

Memory
addressing is
Implemented

 5

18 | P a g e

Memory
Management
.

(21%)

implemented based on a
specific addressing mode

Memory management
unit and allocation is
properly implemented
based on operating
system support

Memory allocation
is implemented

 5

Layout of process address
space and protection is
effectively managed
based on memory usage
optimization

Layout of process
address space is
managed

 5

Virtual memory and
swapping techniques are
efficiently applied based
on system workload

Swapping
techniques are
applied

 5

Techniques for reducing
fragmentation is properly
applied based on
memory allocation and
management best
practices

Techniques for
reducing
fragmentation is
applied

 5

Learning
outcome 3:
Implement
Process
Management

(21%)

Process states and
scheduling algorithms are
properly implemented
based on system
workload.

Scheduling
algorithms are
implemented

 5

Inter-Process
Communication(IPC)
primitives are properly
implemented based on
process data exchange
mechanisms.

Inter-Process
Communication
(IPC) primitives are
implemented

 5

Deadlock handling
algorithms are properly
applied based on
allocated resources.

Deadlock handling
algorithms are
applied

 5

Thread states and
synchronization is
properly applied based
on synchronization
mechanisms

Thread states is
applied

 3

Synchronization is
applied

 2

19 | P a g e

Types of Parallelism are
properly applied based
on the intended
performance and
efficiency

Parallelism are
applied

 2

Lock-Based Concurrency
Control mechanism is
properly implemented
based on data race
prevention measures

Lock-Based
Concurrency
Control mechanism
is implemented

 3

Learning
outcome 4:
Implement
persistence
management
(17%)

Input/ Output systems
are properly applied
based on the interrupt or
Direct Memory Access
(DMA) techniques

Input/ Output
systems are
applied

 10

basic file systems
operations are properly
implemented based on
system requirements.

Basic file systems
operations are
implemented

 5

Persistence management
is properly implemented
based on implemented
file systems

Persistence
management is
implemented

 5

Learning
outcome 5:
Implement a
hobby kernel

(33%)

Target architecture of a
kernel is properly
selected based on the
intended use and
hardware they want to
support.

Target architecture
of a kernel is
selected

 5

A simple boot loader is
properly written based
on target system
architecture

Boot loader is
written

 10

Interrupt handling is
properly implemented
based on operating
system requirements

Interrupt handling
is implemented

 10

A function to display
console output on the
screen in a kernel is
properly written based
on display hardware
being used.

A function to
display console
output on the
screen in a kernel
is written

 5

20 | P a g e

System call is properly
implemented based on
operating system kernel
architecture.

System call is
implemented

 10

Total marks 120

Percentage Weightage 100%

Minimum Passing line % (Aggregate): 70%

21 | P a g e

References:

1. Stephen, Bigelow J. “What is a kernel?” TechTarget, August 2022,

https://www.techtarget.com/searchdatacenter/definition/kernel

2. Leonid, Rosenboim. “What tools do you use to manage operating systems?” LinkedIn,
https://www.linkedin.com/advice/0/what-tools-do-you-use-manage-operating-systems

3. Shichao. “Memory Addressing.” Shichao’s Notes, https://notes.shichao.io/utlk/ch2/

4. Sabela, Ramos, et al. “Cache Line Aware Algorithm Design for Cache-Coherent Architectures.”
IEEE Xplore, https://ieeexplore.ieee.org/abstract/document/7378320

5. David, Law, et al. “Memory allocation” Harvard University, May 9th , 2005,
https://read.seas.harvard.edu/~kohler/class/05s-osp/notes/notes10.html

6. Stephen, Kellett. “Memory Fragmentation, your worst nightmare.” Softwareverify, May 11th,
2021, https://www.softwareverify.com/blog/memory-fragmentation-your-worst-
nightmare/

7. “Process Management.” GeeksforGeeks, December 6th, 2023,
https://www.geeksforgeeks.org/introduction-of-process-management/

8. “Deadlock & Deadlock Handling Methods.” GeeksforGeeks, February 14th, 2024,
https://www.geeksforgeeks.org/introduction-of-process-management/

9. Kızılarslan, Recep. “Fundamental Components of Parallel Programming in Modern Operating
Systems.” Medium, September 8th 2023, https://medium.com/@recepkzilarslan/parallel-
programming-with-modern-operating-systems-i-introduction-modern-os-and-processors-
58582d77567e

10. “Mass Storage Structure.” GitHub pages, Southeast University,
https://csqjxiao.github.io/PersonalPage/csqjxiao_files/OS2015/OSC12.pdf

11. Ananda, Gunawardena. “Systems Programming in C.” Carnegie Mellon University, 2009,
https://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

12. “Example: Integrated file system C functions.” IBM, 2009,
https://www.ibm.com/docs/en/i/7.4?topic=support-example-integrated-file-system-c-
functions

13. Alexandro, Baldassin. “Persistent Memory: A Survery of Programming Support and
Implementations.” São Paulo State University (Unesp), and Institute of Geosciences and Exact
Sciences, Brazil, January, 2021, https://www.dpss.inesc-id.pt/~dcastro/pdf/CSUR2021.pdf

https://medium.com/@recepkzilarslan?source=post_page-----58582d77567e--------------------------------

22 | P a g e

14. “Introduction to Assembly Language.” arm Developer,
https://developer.arm.com/documentation/den0013/d/Introduction-to-Assembly-
Language

15. Theo. “Creating a Kernel from Scratch.” Medium, January 25th 2021,
https://theogill.medium.com/creating-a-kernel-from-scratch-1a1aa569780f

16. Rosner, Frank. “Writing My Own Boot Loader.” DEV.to, March 10th 2021,
https://dev.to/frosnerd/writing-my-own-boot-loader-3mld

17. Rathnayaka, Isuruni. “Develop Your Own x86 Operating System(OS) #4.” Medium, August 6th
2021, https://isu-rathnayaka.medium.com/develop-your-own-x86-operating-system-os-4-
e8479e150451

18. Sugandhi, Abhresh. “System Calls in Operating System: Overview, Types & Examples.” upGrad
KnowledgeHut, January 3rd 2024, https://www.knowledgehut.com/blog/web-
development/system-calls-in-os

19. tutorial point. “Assembly language programming”Assembly Programming Tutorial
(tutorialspoint.com)

