

Ministry of Education

DIGITAL ELECTRONICS FUNDAMENTALS

GENDE501

APPLY DIGITAL ELECTRONICS FUNDAMENTALS

Competence

RQF Level: 5 Learning Hours

- L - 70

Credits: 7

Sector: Energy

Trade: Renewable energy

Module Type: General

Curriculum: ENGREN 5001-TVET Level 5 in Renewable Energy

Copyright: © Rwanda TVET Board, 2024

Issue Date: May 2024

2024-2

Purpose statement	This general module describes the skills, knowledge and attitudes required to					
	apply digital electronics fundamentals. The learner will be able to describe basic					
	concepts of digital electronics, and apply digital number systems, digital					
	arithmetic, digital codes, digital integrated circuit, combinational, sequential					
	circuits, and program	mable l	ogic devi	ces as well.		
Learning assumed	N/A					
to be in place						
Delivery modality	Training delivery 100% Assessment Total 100					Total 100%
	Training Controlly		.0070	Assessment		10tai 10070
	Theoretical content		30%	Accesment	30%	10tai 10070
				Accesiment	30%	10tal 10070
	Theoretical content	30%			30%	10tal 10070
	Theoretical content Practical work:	30%	30%	Formative		50%
	Theoretical content Practical work: • Group work	30%			30% 70%	
	Theoretical content Practical work: • Group work and	30%	30%	Formative		
	Theoretical content Practical work: • Group work and presentation		30%	Formative		

Elements of Competency and Performance Criteria

Elements of competency	Performance criteria
1. Apply digital	1.1. The Digital number systems are described according to their types
numbers	1.2. The Digital codes are identified according to their types
	1.3. The Digital arithmetic are applied according to the type of operators
2. Apply logic gates	2.1. The Logic gates are applied according to their types
	2.2. The Logic families are identified according to their categories
	2.3. The Digital ICs are classified according to their size, technology &
	applications
	2.4. the Logic circuits are simulated and applied according to work to be done
3. Apply Boolean	3.1. The Theorems of Boolean Algebra are identified according to their types
algebra	3.2. The Boolean expressions are formed based on the standard forms
	3.3. The Boolean expressions are simplified according to the simplification tech
4. Apply Fixed logic	4.1. The types of Combinational logic circuits are identified according to their
devices	working and applications
	4.2. The parts of Sequential logic circuits are identified according to its design
	4.3. The types of Sequential logic circuits are identified according to their
	working and applications

5. Apply	5.1. The PLD's working principle is described according to its applications
Programmable	5.2. The PLD types are classified according to their architecture, logic capacity
Logic Devices	and programmability
(PLD)	5.3. The PLD's Programming Languages are identified according to their types
	5.4. the PLD's programming devices are applied according to their types

Intended Knowledge, Skills and Attitude			
Knowledge	Skills	Attitudes	
 ✓ Safety precautions, and security ✓ Technical Symbols and diagrams ✓ Interpret circuit diagrams ✓ Industrial codes and standards ✓ Basic of electronic fundamentals ✓ Basic of arithmetical operation 	 ✓ Computer skills ✓ Proper use of measurement tools ✓ Computer-aided design ✓ Creating circuit diagram ✓ Analytical skills ✓ Diagnostic skills ✓ Communication skills ✓ Collaborative skills ✓ Task management skills 	✓ Honest ✓ Accountability ✓ Self-motivated ✓ Gender sensitive ✓ Customer care oriented ✓ Decisive ✓ Time management ✓ Humble ✓ Creative ✓ Patient ✓ Responsible ✓ Innovative ✓ Flexible ✓ integrity ✓ Goal oriented ✓ Self-confident ✓ Motivated ✓ Good common sense ✓ Self-confident ✓ Honest ✓ Customer focused ✓ Honest ✓ Customer focused ✓ Energetic ✓ Able to work independently ✓ Integrity ✓ Strong moral character ✓ Personal hygiene/grooming ✓ Time management ✓ Open minded ✓ Organized ✓ Maintain health ✓ Positive work ethics	

✓ Gender sensitivity
✓ Flexible
✓ Problem solver
✓ Goals oriented
✓ Teamwork and Collaboration
✓ Professionalism
✓ Strong Work Ethic
✓ Adaptability
✓ Safety Consciousness
✓ Customer Service
Orientation

Course content

Learning outcomes	At the end of the module the learner will be able to:	
	Apply digital numbers	
	Apply Boolean algebra	
	3. Apply logic gates	
	4. Apply Fixed logic devices	
	5. Apply Programmable Logic Devices (PLD)	
Learning outcome 1: Apply	Learning hours: 15	
digital numbers		
In	dicative content	
Definitions and applications of digital e	electronics	
✓ Define analog electronics		
·		
(Define Digital electronics		
✓ Define Digital electronics		
✓ Define Digital electronics✓ Comparison between analogue an	nd digital electronics	
	nd digital electronics	
✓ Comparison between analogue an		
✓ Comparison between analogue an♣Examples of analogue and digit		
 ✓ Comparison between analogue an ↓ Examples of analogue and digit ✓ Applications of digital electronics 		
 ✓ Comparison between analogue and ♣ Examples of analogue and digit ✓ Applications of digital electronics • Digital number systems 		
 ✓ Comparison between analogue and ♣ Examples of analogue and digit ✓ Applications of digital electronics • Digital number systems ✓ Definitions 	al devices, signals, phenomena	
 ✓ Comparison between analogue and ♣ Examples of analogue and digit ✓ Applications of digital electronics • Digital number systems 	al devices, signals, phenomena	

Digital codes

- ✓ Introduction to digital codes
- ✓ Digital codes types
- ✓ Digital codes conversion

Digital arithmetic

- ✓ Introduction to digital arithmetic
- √ Complement of a Number
 - 1's complement
 - 2's complement
- ✓ Digital arithmetic operations
 - Addition
 - Multiplication
 - Subtraction
 - Division

Resources required for the learning outcome

Equipment	 Computer, projector, digital display, Analogue display
Materials	 Markers/ chalks, board, Internet
Tools	 Calculator, books
Facilitation techniques	BrainstormingGroup discussionPresentation
Formative assessment methods /(CAT)	Written assessment

Learning outcome 2: Apply logic Learning hours: 15 gates

Indicative content

- Introduction to logic gates
- Types of logic gates
 - ✓ Truth table
 - ✓ Apply Logic gates
 - ✓ Universal logic gates
 - ✓ Applications of logic gates
- **Apply Logic families**
 - ✓ Types of logic families

- TTL
- **♣** ECL
- **MOS**
- ✓ Characteristic Parameters of Logic Families
- ✓ Comparison of main logic families
- ✓ Interpretation of user manual

Apply Digital ICs

- ✓ Advantages and limitations of ICs
- ✓ Classification of digital ICs
 - Based on Technology
 - Based on number of active components
 - Based on applications
 - Based on manufacturing method
- ✓ Applying digital ICs in electronic circuits
 - ♣ Logic gates (74HCXX, 74LSXX...)
 - **♣** CD4017
 - XX555 timer
- ✓ Logic circuits simulation in software
 - Simulation software description
 - Design and run logic circuits
 - Construction of Logic circuits on breadboard

Resources required for the learning outcome

Equipment	 Computer, Projector, Multimeters, DC power supply,
Materials	 Markers/ chalks, Board, Internet, logic gates ICs, Breadboard, Jumper wires, Electronic components
Tools	 Books, Multisim software/ Proteus software
Facilitation techniques	 Brainstorming Trainer guided Group discussion Presentation
Formative assessment methods /(CAT)	Written assessmentPerformance assessment

Learning outcome 3: Ap Boolean Algebra

Apply Learning hours: 10

Indicative content

- Introduction to Boolean algebra
- Theorems of Boolean Algebra
 - ✓ Description of Boolean Algebra Laws
 - ✓ Demorgan's theorems
- Standard Forms of Boolean Expressions
 - ✓ Boolean Expressions
 - √ Standard Forms
- Boolean expressions simplification techniques
 - ✓ Using Boolean algebra laws
 - ✓ Using Karnaugh map (K-map)

Resources required for the learning outcome

Equipment	Computer, projector		
Materials	 Markers/ chalks, board, Internet 		
Tools	■ Books		
Facilitation techniques	BrainstormingGroup discussionPresentation		
Formative assessment methods /(CAT)	 Written assessment 		

Learning outcome4: Fixed Logic Devices

Apply

Learning hours: 15

Indicative content

- Apply Combinational logic circuits
 - ✓ Design and Working principle
 - ✓ Types of combinational logic circuits
 - Apply Adder and Subtractor
 - Apply Comparator
 - Apply Multiplexer and Demultiplexer
 - Apply Encoder and Decoder
 - ✓ Applications of combinational logic circuits
- Multivibrators using ICs
- Apply Sequential logic circuits

- ✓ Design and Working principle
- ✓ Types of Sequential logic circuits
 - Introduction
 - Clock Signal and Triggering
 - Asynchronous circuits
 - Synchronous circuits
- ✓ Apply Flip-Flops
 - Introduction
 - Latches
 - ♣ Set-Reset (SR) Flip-Flops
 - ♣ Toggle (T) Flip-Flops
 - Data (D) Flip-Flops
 - ♣ Jack Kilby (JK) Flip-Flops
- ✓ Apply Counters
 - Introduction
 - Up/Down counter
 - Decade counter
 - Ripple counter
 - Ring counter
 - Johnson counter
- ✓ Apply Shift Registers
 - Introduction
 - ♣ Serial In Serial Out shift register
 - ♣ Serial In Parallel Out shift register
 - Parallel In Serial Out shift register
 - ♣ Parallel In Parallel Out shift register
 - Universal shift Register

Resources required for the learning outcome

Equipment	•	Computer, Projector, Multimeters, DC power supply
Materials	•	Markers/ chalks, board, Internet, logic ICs, breadboard, jumper wires, electronic components
Tools	-	Books, Multisim software/ Proteus software, universal plier
Facilitation techniques	• •	Brainstorming Trainer guided Group discussion

	Presentation	٦
Formative assessment methods /(CAT)	Written assessmentPerformance assessment	
Learningoutcome5:		Learning hours: 15
Programmable Logic Devices		
	In	dicative content

- **Introduction to Programmable Logic Devices (PLD)**
- **PLD Working principle**
- **Types of PLDs**
 - ✓ Based on size: simple and complex
 - ✓ Based on the type of array
- **Programming languages of PLDs**
 - ✓ Description of Programming languages
 - ✓ Programming process
 - ✓ Building a Logic Design
 - ✓ Functional Simulation
 - √ Timing Simulation
 - ✓ Device Programming (Downloading)
- **PLD** programming logical devices

F	Resources required for the learning outcome
Equipment	Computer, Projector, Multimeters, DC power supply,
Materials	 Markers/ chalks, Board, Internet, logic ICs, PLDs, Breadboard, Jumper wires, electronic components
Tools	Books, PLD programming software
Facilitation techniques	 Brainstorming Trainer guided Group discussion Presentation
Formative assessment methods /(CAT)	Written assessmentPerformance assessment

List of abbreviations

1. CAT: Continuous Assessment Testing

2. DC: Direct Current

3. ECL: Emitter Coupled Logic

4. IC: Integrated Circuit

5. MOS: Metal Oxide Semiconductor

6. PLD: Programmable Logic Device

7. TTL: Transistor - Transistor Logic

8. TVET: Technical and Vocational Education and Training

References

- 1. Floy & Jain, Digital Fundamentals, 8th ed., India, 2006
- 2. T. L. Floyd, Digital Fundamentals, 11th ed, England, Pearson, 2015
- 3. A. K. Maini, Digital Electronics Principles, Devices and Applications, India, John Wiley, 2007
- 4. R. Tokheim, Digital Electronics: Principles and Applications, 8th ed., USA, 2014
- 5. B.L. Theraja, A Textbook of Electrical Technology Vol IV Electronic Devices and Circuits
- 6. Maini, Anil K. Digital electronics: principles, devices and applications. John Wiley & Sons, 2007.
- 7. Peyton, A., & Walsh, V. (1993). Analog electronics with op-amps: a source book of practical circuits. Cambridge University Press.
- 8. Ercegovac MD, Lang T. Digital arithmetic. Elsevier; 2004.
- 9. Ercegovac, Milos D., and Tomas Lang. Digital arithmetic. Elsevier, 2004.
- 10. https://www.techtarget.com/whatis/definition/logic-gate-AND-OR-XOR-NOT-NAND-NORand-XNOR
- 11. https://www.tutorialspoint.com/computer_logical_organization/logic_gates.htm
- 12. Larson, L. E. (1998). Integrated circuit technology options for RFICs-present status and future directions. IEEE Journal of Solid-State Circuits, 33(3), 387-399.
- 13. https://www.slant.co/topics/23130/~logic-circuit-simulators
- 14.https://www.tutorialspoint.com/digital_circuits/digital_circuits_shift_registers.htm
- 15.https://bpcbirgunj.edu.np/wpcontent/uploads/2019/10/DIGITAL_ELECTRONICS-byFlyod.pdf

Glossary

Activity: Activities include releases, events, and deployment plans that you develop, start, and complete with the product.

Logic gate: a device that acts as a building block for digital circuits

Digital: electronic technology that generates, stores, and processes data in terms of two states: positive and non-positive. It is expressed as series of the digits 0 and 1, typically represented by values of a physical quantity such as voltage

Electronics: the branch of physics and technology concerned with the design of circuits using transistors and microchips, and with the behavior and movement of electrons in a semiconductor, conductor, vacuum, or gas.

Integrated circuit: An IC is the fundamental building block of all modern electronic devices. It's an integrated system of

multiple miniaturized and interconnected components embedded into a thin substrate of semiconductor material (usually silicon crystal)

A programmable logic device: PLD is an electronic component used to build reconfigurable digital circuits.

Digital electronics: is the study of electronic circuits that are used to process and control digital signals.

Combinational logic circuit: is a circuit whose outputs only depend on the current state of its inputs. In mathematical terms, each output is a function of the inputs.

Sequential logic circuit: consists of a series of various inputs and outputs. Here, the outputs depend on a combination of both the present inputs as well as the previous outputs.